Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-02T16:49:10.828Z Has data issue: false hasContentIssue false

Residual Stresses in Sputtered ZnO Films on (100) Si Substrates by XRD

Published online by Cambridge University Press:  31 January 2011

Florine Conchon
Affiliation:
[email protected], U. Poitiers, LPM-CNRS UMR 6630, Futuroscope-chasseneuil, France
Pierre-Olivier Renault
Affiliation:
[email protected], U. Poitiers, LPM-CNRS UMR 6630, Futuroscope-chasseneuil, France
Philippe Goudeau
Affiliation:
[email protected], U. Poitiers, LPM-CNRS UMR 6630, Futuroscope-chasseneuil, France
Eric Le Bourhis
Affiliation:
[email protected], U. Poitiers, LPM-CNRS UMR 6630, Futuroscope-chasseneuil, France
Elin Sondergard
Affiliation:
[email protected], Saint Gobain/CNRS, SVI-UMR 125, Aubervilliers, France
Etienne Barthel
Affiliation:
[email protected], Saint Gobain/CNRS, SVI-UMR 125, Aubervilliers, France
Sergey Grachev
Affiliation:
[email protected], Saint Gobain/CNRS, SVI-UMR 125, Aubervilliers, France
Eric Gouardes
Affiliation:
[email protected], Saint Gobain, SGR, Aubervilliers, France
Veronique Rondeau
Affiliation:
[email protected], Saint Gobain, SGR, Aubervilliers, France
René Gy
Affiliation:
[email protected], Saint Gobain, SGR, Aubervilliers, France
Remi Lazzari
Affiliation:
[email protected], Institut des Nanosciences de Paris, UMR 7588, Paris, France
Jacques Jupille
Affiliation:
[email protected], Institut des Nanosciences de Paris, UMR 7588, Paris, France
Nathalie Brun
Affiliation:
[email protected], U. Orsay, LPS UMR 8502, Orsay, France
Get access

Abstract

Residual stresses in sputtered ZnO films on Si are investigated and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films encapsulated or not by Si3N4 protective coatings are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After a heat treatment at 800°C, ZnO films are tensily stressed while ZnO films encapsulated by Si3N4 are stress-free. With the aid of in-situ X-ray diffraction, we argue that this thermally-activated stress relaxation can be attributed to a variation of the chemical composition of the ZnO films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, C.S., Kuo, C.T., Wu, T.B., Lin, I.N., Jpn. J. Appl. Phys. 36, 1169 (1997)10.1143/JJAP.36.1169Google Scholar
2 Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mat. Sci. 50, 293 (2005)10.1016/j.pmatsci.2004.04.001Google Scholar
3 Hiramatsu, T., Furuta, M., Furuta, H., Matsuda, T., Li, C., Hirao, T., J. Cryst. Growth, 311, 282 (2009)10.1016/j.jcrysgro.2008.10.097Google Scholar
4 Haga, K., Suzuki, T., Kashiwaba, Y., Watanabe, H., Zhang, B.P., Segawa, Y., Thin Solid Films, 433, 131 (2003)10.1016/S0040-6090(03)00327-4Google Scholar
5 Sun, X.W., Kwok, H.S., J. Appl. Phys. 86, 408 (1999)10.1063/1.370744Google Scholar
6 Lee, H.X., Lau, S.P., Wang, Y.G., Tay, B.K., Hng, H.H., Thin Solid Films, 458, 15 (2004)10.1016/j.tsf.2003.11.167Google Scholar
7 Zhang, S.B., Wei, S.-H., Zunger, A., Phys. Rev. B 63, 075205 (2000)10.1103/PhysRevB.63.075205Google Scholar
8 Hsiao, C.-S., Chen, S.-Y., Kuo, W-Li, Lin, C.-C., Cheng, S.-Y., Nanotechnology 19, 405608 (2008)10.1088/0957-4484/19/40/405608Google Scholar
9 Kang, S. J., Joung, Y. H., Appl. Surf. Sci. 253, 7330 (2007)10.1016/j.apsusc.2007.03.020Google Scholar
10 Hwang, B., Park, K., Chun, H.-S., An, C.-H., Kim, H., Lee, H.-J., Appl. Phys. Lett. 93, 222104 (2008)10.1063/1.3031726Google Scholar
11 Chen, S.J., Liu, Y.C., Shao, C.L., Xu, C.S., Liu, Y.X., Wang, L., Liu, B.B., Zou, G.T., J. Appl. Phys. 99, 066102 (2006)10.1063/1.2177928Google Scholar
12 Puchert, M.K., Timbrell, P.Y., Lamb, R.N., J. Vac. Sci. Technol. A 14, 2220 (1996)10.1116/1.580050Google Scholar
13 Hauk, V., “Structural and residual stress analysis by nondestructive methods”, Elsevier (1997)Google Scholar
14 Tranchant, J., Tessier, P.Y., Landesman, J.P., Djouadi, M.A., Angleraud, B., Renault, P.O., Giraud, B., Goudeau, P., Surf. Coat. Technol. 202, 2247 (2008)10.1016/j.surfcoat.2007.07.030Google Scholar
15 Stoney, G.G., Proc. Soc. Lond. A82, 172 (1909)10.1098/rspa.1909.0021Google Scholar
16 Simmons, G., Wang, H., “Single elastic constants and calculated aggregate properties: a handbook”, second edition, Cambridge Massachusetts and London England (1971)Google Scholar
17 Hinze, J., Ellmer, K., J. Appl. Phys. 88, 2443 (2000)10.1063/1.1288162Google Scholar
18 Kappertz, O., Drese, R., Wuttig, M., J. Vac. Sci. Technol. A, 20, 2084 (2002)10.1116/1.1517997Google Scholar
19 Drese, R., Wuttig, M., J. Appl. Phys. 98, 073514 (2005)10.1063/1.2061888Google Scholar
20 Okada, Y., Tokumaru, Y., J. Appl. Phys. 56, 314 (1984)10.1063/1.333965Google Scholar
21 Ellmer, K., Klein, A., Rech, B., “Transparent conductive zinc oxide: basics and applications in thin film solar cell”, Springer series in materials science, 104 (2008)10.1007/978-3-540-73612-7Google Scholar
22 Conchon, F., Boulle, A., Guinebretière, R., Dooryhée, E., Hodeau, J.-L., Girardot, C., Pignard, S., Kreisel, J., Weiss, F., Libralesso, L., Lee, T. L., J. Appl. Phys. 103, 123501 (2008)10.1063/1.2938845Google Scholar
23 Dutta, S., Chattopadhyay, S., Sarkar, A., Chakrabarti, M., Sanyal, D., Jana, D., Prog. Mater. Sci. 54, 89 (2009)10.1016/j.pmatsci.2008.07.002Google Scholar
24 Zhao, J., Hu, L., Liu, W., Wang, Z., Appl. Surf. Sci. 253 (2007)Google Scholar
25 Wang, K., Ding, Z., Yao, S., Zhang, H., Tan, S., Xiong, F., Zhang, P., Mater. Res. Bull. 43, 3327 (2008)10.1016/j.materresbull.2008.02.013Google Scholar
26 Janotti, A., Walle, C.G. Van de, Phys. Rev. B 76, 165202 (2007)10.1103/PhysRevB.76.165202Google Scholar