Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:32:28.090Z Has data issue: false hasContentIssue false

Residual Deformations Induced By The Thermal Shock During Pulsed Ion Implantation

Published online by Cambridge University Press:  21 February 2011

Jorge N. Feugeas
Affiliation:
Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
S. P. BrÜhl
Affiliation:
Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
G. Sanchez
Affiliation:
Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
G. H. Kaufmann
Affiliation:
Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
Get access

Abstract

Samples of AISI 316 Stainless Steel were nitrogen and argon ion implanted with pulsed beams generated with a Plasma Gun operated in the detonation mode. The residual deformations induced by the beams were studied by double exposure (before and after implantation) holographic interferometry.

The results showed residual deformations corresponding to a concave situation, with the total value depending on the number of single pulses accumulated. A saturation in the deformation is observed when the number of pulses is > 20. A model of the process of pulsed irradiation (based on the strong thermal effect due to the short duration of pulses) and the state of stresses induced in the surface layers is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dearnaley, G., Surf. Eng., 7, 127 (1991).Google Scholar
2 Feugeas, J., Sanchez, G., Grigioni, G. and de Gonzalez, C. O., in Materials Modification by Energetic Atoms and Ions, edited by Grabowski, K. S., Barnett, S. A., Rossnagel, S. M. and Wasa, K. (Mat. Res. Soc. Proc. 268, San Francisco, CA, 1992) pp. 389 Google Scholar
3 Pochettino, A. A., Feugeas, J., Ortiz, M. and Sanchez, G. in Residual Stresses III, edited by Fujiwara, H., Abe, T. and Tanaka, K. (Elsevier Applied Science, 1992), pp. 833.Google Scholar
4 Kaufmann, G. H., Briihl, S. P. and Feugeas, J. N., Surface and Coating Technology (in press).Google Scholar
5 Mather, J. W.. Plasma Physics and Cont. Nucl. Research, IAEA, Culham, C-21/80, Vol. 2 (1965).Google Scholar
6 Matthys, D. R., Dudderar, T. D. and Gilbert, J. A., Exp. Mech., 28, 86 (1988).Google Scholar
7 Ziegler, J. F., Biersack, J. P. and Littmark., U. The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
8 Sanchez, G., Grigioni, G. and Feugeas, J., Surface and Coating Technology (in press).Google Scholar
9 Timoshenko, S. and Goodier, J. M., 2nd. ed. Theory of Elasticity (McGraw-Hill, New York, 1951).Google Scholar
10 Briihl, S. P., Sanchez, G., Storti, M., Cardona, A., Feugeas, J. N. and Kaufmann, G. H. (submitted to Journal of Physics D: Applied Physics).Google Scholar