No CrossRef data available.
Article contents
Reprocessing Silicon Carbide Inert Matrix Fuel by Molten Salt Corrosion
Published online by Cambridge University Press: 31 January 2011
Abstract
Silicon carbide is one of the prime matrix material candidates for inert matrix fuels (IMF) which are being designed to reduce plutonium and long half-life actinide inventories through transmutation. Since complete transmutation is impractical in a single in-core run, reprocessing the inert matrix fuels becomes necessary. The current reprocessing techniques of many inert matrix materials involve dissolution of spent fuels in acidic aqueous solutions. However, SiC cannot be dissolved by that process. Thus, new reprocessing techniques are required.
This paper discusses a possible way for separating transuranic (actinide) species from a bulk silicon carbide (SiC) matrix utilizing molten carbonates. Bulk reaction-bonded SiC and SiC powder (1 μm) were corroded at high temperatures (above 850 °C) in molten carbonates (K2CO3 and Na2CO3) in an air atmosphere to form water soluble silicates. Separation of Ceria (used as a surrogate for the plutonium fissile fuel) was achieved by dissolving the silicates in boiling water and leaving behind the solid ceria (CeO2).
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010