Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:31:54.471Z Has data issue: false hasContentIssue false

The Representation of Thermodynamic Properties in Multicomponent Alloys

Published online by Cambridge University Press:  15 February 2011

I. Ansara*
Affiliation:
Laboratoire de Thermodynamique et Physico–Chimie Métallurgiques, E.N.S.E.E.G., B.P. 44, 38401 SAINT MARTIN D'HERES., (FRANCE).
Get access

Abstract

In addition to theoretical models which have been developped to interpret the interactions in metallic systems, polynomials of different types have been used to represent the thermodynamic properties of solution phases. Ternary and higher order systems have been described by adding the properties of the limiting binary systems, using various summation methods ; interaction parameters specific to the multicomponent systems can be derived from sufficiently precise experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hildebrand, J.H., J. Am. Chem. Soc., 51, 1929, 66.Google Scholar
2. Guggenheim, E.A., “Mixtures”, 1952 Oxford, Clarendon Press.Google Scholar
3. Brion, B., Mathieu, J.C., Hicter, P. and Desre, P., J. Chim. Phys., 66, 1969, 7-8, 1238 ; 67, 1970, 10, 1745.Google Scholar
4. Lupis, C.H.P. and Elliott, J.F., Acta Met., 15, 1967, 265.Google Scholar
5. Kichuchi, R., Acta Met; 25, 1977, 195.CrossRefGoogle Scholar
6. Kichuchi, R., de Fontaine, D., Murakami, M., and Nakumara, T., Acta Met; 25, 1977, 207.Google Scholar
7. Sundman, B. and Agren, J., J. Phys. Chem. Solids, 42, 1981, 297.Google Scholar
8. Margules, M., Sitzungsber, Akad. Wiss. Wien, Mathem. Naturwiss. K1, 104.Google Scholar
9. Borelius, G., Ann. Phys. Ser 5, 20, 1934, 57.Google Scholar
10. Redlich, O. and Kister, A.T., Ind. Engng. Chem., 40, 1948, 345.Google Scholar
11. Bale, C.W. and Pelton, A.D., Met. Trans., 5, 1974, 2323.Google Scholar
12. Hillert, M., Calphad, 4, 1980, 1,1.Google Scholar
13. Vermande, A., Ansara, I., and Mathieu, J.C., J. Chim. Phys.; 5, 1980, 535.Google Scholar
14. Kohler, F., Monatsh. Chemie, 91, 1960, 738.CrossRefGoogle Scholar
15. Colinet, C., D.E.S., Fac. des Sci., Univ. Grenoble, France, 1967.Google Scholar
16. Muggianu, Y.M., Gambino, M. and Bros, J.P., J. Chim. Phys.,72, 1975, 83.Google Scholar
17. Rand, M.H., Quoted in 12.Google Scholar
18. Toop, G.W., Trans. Aime, 233, 1965, 850.Google Scholar
19. Spencer, P.J., Hayes, F.H., Kubaschewski, O., Rev. Chim. Min; 9, 1971, 13.Google Scholar
20. Jacob, K.J. and Fitzner, K., Thermochim. Acta, 18, 1977, 197.Google Scholar
21. Ansara, I., Bernard, C., Kaufman, L. and Spencer, P., Calphad, 2, 1978, 1,1.Google Scholar
22. Kaufman, L. and Nesor, N., Calphad, 2, 1978, 4, 325.Google Scholar
23. Bros, J.P., Doc. és Sci. Phys. Univ. N° Ao 2843, Univ. Aix–Marseille, 1968.Google Scholar
24. Ansara, I., Bros, J.P. and Gambino, M., Calphad, 3, 1979, 3, 225.Google Scholar
25. Ansara, I., Bros, J.P. and Girard, C., Calphad, 2, 1978, 3, 187.Google Scholar