Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:43:07.340Z Has data issue: false hasContentIssue false

Repassivation Potentials for Long-Term Life Prediction of Localized Corrosion

Published online by Cambridge University Press:  01 January 1992

Narasi Sridhar
Affiliation:
Center for Nuclear Waste Regulatory Analyses, 6220 Culebra Road San Antonio, TX 78228
Gustavo Cragnolino
Affiliation:
Center for Nuclear Waste Regulatory Analyses, 6220 Culebra Road San Antonio, TX 78228
Get access

Abstract

The effect of pit growth on repassivation potentials (Erp) of type 316L stainless steel (SS) and alloy 825 is investigated using a decreasing potential staircase technique. The Erp decreases initially with increasing pit depth and then attains a value which is relatively independent of pit depth. The Erp also decreases with increasing potential scan rate because of the decreasing time for repassivation with decreasing potential. The Erp, is explained in terms of the effect of applied potential on changes in solution composition inside growing pits and its use is recommended as a bounding parameter for long-term prediction of localized corrosion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cragnolino, G. A. and Sridhar, N.. in Report on Research Activities for Calendar Year 1990. Patrick, W.C., ed. NUREG/CR-5817. (Nuclear Regulatory Commission (NRC), Washington D.C., 1991), Chapter 5.Google Scholar
2. Cragnolino, G. A. and Sridhar, N., Corrosion 47, 465472 (1991).Google Scholar
3. Okayama, S., Uesugi, Y., and Tsujikawa, S., Corrosion Engineering 36, 157168 (1987).Google Scholar
4. Cragnolino, G. A. and Sridhar, N.. in Report on Research Activities for Calendar Year 1991. Patrick, W.C., ed. (Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, 1992), CNWRA 91–01A, Chapter 5.Google Scholar
5. Cragnolino, G. A., and Sridhar, N., in Semi-Annual Report on Research Activities, Patrick, W.C., ed. (Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, 1992), Chapter 5.Google Scholar
6. Pourbaix, M., Klimzack-Mathieu, L., Martens, C., Meunier, J., Vanlengenhaghe, C., Munch, L.D., Laureys, J., Nellmans, L., and Warzee, M.. Corrosion Science 3, 239 (1963).Google Scholar
7. Wilde, B.E. and Williams, E., J. Electrochem. Soc. 118, 10571062, (1971).Google Scholar
8. Wilde, B.E., in Localized Corrosion. edited by Staehle, R.W., Brown, B.F., Kruger, J. and Agrawal, A., (National Association of Corrosion Engineers, Houston, TX, 1974) pp. 342352.Google Scholar
9. Rosenfeld, I. L., Danilov, I. S., and Oranskaya, R. N., J. Electrochem. Soc., 125, 17291735 (1978).Google Scholar
10. Starr, K. K., Verink, E.D. Jr., and Pourbaix, M., Corrosion 32, 4751 (1976).Google Scholar
11. Nakayama, T., and Sasa, K., Corrosion 32, 283285 (1976).Google Scholar
12. Yashiro, H., and Tanno, K., Corrosion Science 31, 485490 (1990).Google Scholar
13. Newman, R. C., and Franz, E.M., Corrosion 40, 325330 (1984).Google Scholar
14. Batista, W., Louvisse, A. M. T., Mattos, O. R., and Sathler, L., Corrosion Science, 28, 759768 (1988).Google Scholar
15. Newman, R. C., Corrosion Science 23, pp. 10451046. (1983).Google Scholar
16. Hakkarainen, T., in Passivity of Metals and Semiconductors, Froment, M., ed., (Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1983), p. 367 .Google Scholar
17. Tsujikawa, S., Soné, Y., and Hisamatsu, Y., Corrosion Chemistry Within Pits, Crevices, and Cracks. Turnbull, A., ed. (Her Majesty's Stationery Office. London, United Kingdom, 1987) pp. 17 1186 .Google Scholar