Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:25:42.880Z Has data issue: false hasContentIssue false

Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

Published online by Cambridge University Press:  01 February 2011

Raul B. Rebak
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Gabriel O. Ilevbare
Affiliation:
Electric Power Research Institute, Palo Alto, CA, 94304, USA
Ricardo M. Carranza
Affiliation:
Atomic Energy Commission of Argentina, 1650 San Martin, Argentina
Get access

Abstract

A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75°C and at 90°C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 ASTM International, Standard B575, Vol. 02.04 (ASTM, 2002: West Conshohocken, PA).Google Scholar
2 Haynes International, Hastelloy C-22 Alloy, Brochure H-2019E (Haynes International, 1997: Kokomo, IN).Google Scholar
3 Rebak, R. B. in Corrosion and Environmental Degradation, Volume II, p. 69, Wiley-VCH, Weinheim, Germany (2000).Google Scholar
4 Rebak, R. B. and Crook, P., “Nickel Alloys for Corrosive Environments,” Advanced Mater. & Proc., 157, 37, 2000.Google Scholar
5 Rebak, R. B. and Crook, P., Influence of the Environment on the General Corrosion Rate of Alloy 22,” PVP-Vol. 483 pp. 131136 (ASME, 2004: New York, NY).Google Scholar
6 Rebak, R. B. and Payer, Joe H., Passive Corrosion Behavior of Alloy 22,” ANS Conf. International High Level Radioactive Waste Management, Las Vegas 30Apr-04May 2006.Google Scholar
7 Rebak, R. B. and Crook, P., “Improved Pitting and Crevice Corrosion Resistance of Nickel and Cobalt Based Alloys,” ECPV 98-17, pp. 289302 (The Electrochemical Society, 1999: Pennington York, NJ).Google Scholar
8 Kehler, B. A., Ilevbare, G. O. and Scully, J. R., Corrosion, 1042 (2001).Google Scholar
9 Evans, K. J. and Rebak, R. B. in Corrosion Science – A Retrospective and Current Status in Honor of Robert P. Frankenthal, PV 2002-13, p. 344354 (The Electrochemical Society, 2002: Pennington, NJ).Google Scholar
10 Evans, K. J., Day, S. D., Ilevbare, G. O., Whalen, M. T., King, K. J., Hust, G. A., Wong, L. L., Estill, J. C. and Rebak, R. B., PVP-Vol. 467, Transportation, Storage and Disposal of Radioactive Materials –2003, p. 55 (ASME, 2003: New York, NY).Google Scholar
11 Pan, Y-M., Dunn, D. S. and Cragnolino, G. A. in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures, STP 1401, pp. 273288 (West Conshohocken, PA: ASTM 2000).Google Scholar
12 Rebak, R. B. in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures, STP 1401, pp. 289300 (West Conshohocken, PA: ASTM 2000).Google Scholar
13 Brossia, C. S., Browning, L., Dunn, D. S., Moghissi, O. C., Pensado, O. and Yang, L., “Effect of Environment on the Corrosion of Waste Package and Drip Shield Materials,” Publication of the Center for Nuclear Waste Regulatory Analyses (CNWRA 2001-03), September 2001.Google Scholar
14 Dunn, D. S., Yang, L., Pan, Y.-M. and Cragnolino, G. A., “Localized Corrosion Susceptibility of Alloy 22,” Paper 03697 (NACE International, 2003: Houston, TX).Google Scholar
15 Evans, K. J., Yilmaz, A., Day, S. D., Wong, L. L., Estill, J. C. and Rebak, R. B., “Comparison of Electrochemical Methods to Determine Crevice Corrosion Repassivation Potential of Alloy 22 in Chloride Solutions, JOM, p. 56, January 2005.Google Scholar
16 Cragnolino, G. A., Dunn, D. S. and Pan, Y.-M., “Localized Corrosion Susceptibility of Alloy 22 as a Waste Package Container Material,” Scientific Basis for Nuclear Waste Management XXV, Vol. 713 (Materials Research Society 2002: Warrendale, PA).Google Scholar
17 Dunn, D. S. and Brossia, C. S., “Assessment of Passive and Localized Corrosion Processes for Alloy 22 as a High-Level Nuclear Waste Container Material,” Paper 02548 (NACE International, 2002: Houston, TX).Google Scholar
18 Lee, J. H., Summers, T. and Rebak, R. B., “A Performance Assessment Model for Localized Corrosion Susceptibility of Alloy 22 in Chloride Containing Brines for High Level Nuclear Waste Disposal Container,” Paper 04692 (NACE International, 2004: Houston, TX).Google Scholar
19 Dunn, D. S., Yang, L., Wu, C. and Cragnolino, G. A., Material Research Society Symposium, Spring 2004, San Francisco, Proc. Vol. 824 (MRS, 2004:Warrendale, PA).Google Scholar
20 Dunn, D. S., Pan, Y.-M., Yang, L. and Cragnolino, G. A and He, X., “Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Containers” JOM, January 2005, pp 4955.Google Scholar
21 Rebak, R. B., “Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22,” Paper 05610, Corrosion/2005 (NACE International, 2005: Houston, TX).Google Scholar
22 Dunn, D. S., Pan, Y.-M., Yang, L. and Cragnolino, G. A, Corrosion, 61, 11, 1076, 2005.Google Scholar
23 Ilevbare, G. O., King, K. J., Gordon, S. R., Elayat, H. A., Gdowski, G. E. and Gdowski, T. S. E., Journal of The Electrochemical Society, 152, 12, B547–B554, 2005.Google Scholar
24 Dunn, D. S., Pan, Y.-M., Yang, L., and Cragnolino, G. A., Corrosion, 61, 1078 (2005).Google Scholar
25 Dunn, D. S., Pan, Y.-M., Yang, L., and Cragnolino, G. A., Corrosion, 62, 3 (2006).Google Scholar
26 Ilevbare, G. O., Corrosion, 62, 340 (2006).Google Scholar
27 Carranza, R. M., Rodríguez, M. A., and Rebak, R. B., Corrosion, 63, 480 (2007).Google Scholar
28 Rebak, R. B., “Mechanisms of Inhibition of Crevice Corrosion in Alloy 22,” in proceedings of Scientific Basis for Nuclear Waste Management XXX, (MRS, 2006: Warrendale, PA).Google Scholar
29 ASTM International, Volume 03.02 “Wear and Erosion; Metal Corrosion” (ASTM International, 2003: West Conshohocken, PA).Google Scholar
30 Evans, K. J., Wong, L. L. and Rebak, R. B. Determination of the Crevice Repassivation Potential of Alloy 22 by a Potentiodynamic-Galvanostatic-Potentiostatic Method,” PVPASME Vol. 483, pp. 137149 (American Society of Mechanical Engineers, 2004: New York, NY).Google Scholar
31 Evans, K. J. and Rebak, R. B.Determination of the Crevice Repassivation Potential of Alloy 22 by a Potentiodynamic-Galvanostatic-Potentiostatic Method,” (to be published in JAI, the journal or ASTM International).Google Scholar