Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:26:17.707Z Has data issue: false hasContentIssue false

Reorientational Dynamics of a Nematogenic Liquid in Porous Sol-Gel-Glasses: Surface and Pore Size Effects

Published online by Cambridge University Press:  15 February 2011

F. W. Deeg
Affiliation:
Institut für Physikalische Chemie, Universität München, Sophienstrasse 11, D-80333 München, Germany
G. Schwalb
Affiliation:
Institut für Physikalische Chemie, Universität München, Sophienstrasse 11, D-80333 München, Germany
Get access

Abstract

Time-resolved transient grating optical Kerr effect experiments on a nanosecond timescale were used to investigate the reorientational dynamics of pentylcyanobiphenyl (5CB) confined in the nanometer lengthscale pores of silica glasses. Pore size dependent studies (25 Å ≤ d ≤ 100 Å) over a large temperature range from the bulk phase transition temperature Tni, = 35.2 ° C up to 115 ° C demonstrate a drastic influence of geometrical restriction on the cooperative reorientational motion in the nematogenic liquid. At temperatures far above the phase transition (T ≥ 70 °C) a bulk phase and a distinct surface layer with different dynamic properties are observed. With pore size reduction to 25 Å, a decrease of the surface layer thickness and an increase of the surface layer relaxation time are found. This is associated with the modification of the surface layer structure by geometrical factors, e.g., the pore curvature. Measurements at lower temperature in the range TniTTni = 30 ° C show a drastic decrease of the mean relaxation time τ of the order parameter fluctuations compared to the bulk. The relaxation dynamics exhibit a pronounced pore size dependence which can be explained by a crude correlation length cutoff model as well as a modified LandaudeGennes ansatz. However, these approaches cannot reproduce the nonexponentiality of the observed decays suggesting the importance of interporous interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. deGennes, P.G., The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).Google Scholar
2. Bellini, T., Clark, N.A., Muzny, C.D., Wu, L., Schaefer, D.W., Oliver, B.J., Phys. Rev. Lett, 69, 788 (1992).Google Scholar
3. lannachione, G.S., Crawford, G.P., Zumer, S., Doane, J.W., Finotello, D., Phys. Rev. Lett, 71, 2595 (1993).Google Scholar
4. Wu, X.L., Goldburg, W.I., liu, M.X., Xue, J.Z., Phys. Rev. Lett, 69, 470 (1992).Google Scholar
5. Tripathi, S., Rosenblatt, C., Aliev, F.M., Phys. Rev. Lett, 72, 2725 (1994).Google Scholar
6. Dierker, S.B. and Wiltzius, P., Phys. Rev. Lett, 66, 1185 (1991); B.J. Frisken and D.S. Cannell, Phys. Rev. Lett, 69, 632 (1992).Google Scholar
7. Finotello, D., Gillis, K.A., Wong, A., Chan, M.H.W., Phys. Rev. Lett, 61, 1954 (1988); A. Wong and M.H. Chan, Phys. Rev. Lett, 65, 2567 (1990)Google Scholar
8. Yan, Y.X., Nelson, K.A., J. Chem. Phys., 87, 6257 (1987).Google Scholar
9. Deeg, F.W., Greenfield, S.R., Stankus, J., Newell, V.J., Fayer, M.D., J. Chem. Phys., 93, 3503 (1990).Google Scholar
10. Deeg, F.W., Fayer, M.D., J. Chem. Phys., 91, 2269 (1989).Google Scholar
11. Deeg, F.W., Diercksen, K., Schwalb, G., Bräuchle, C., Reinecke, H., Phys. Rev. B, 44, 2830 (1991).Google Scholar
12. Schwalb, G., Deeg, F.W., Bräuchle, C., J. Non-Cryst. Sol., 172–174, 348 (1994).Google Scholar
13. Schwalb, G. and Deeg, F.W., Phys. Rev. Lett., submitted.Google Scholar
14. Warnock, J., Awschalom, D.D., Shafer, M.W., Phys. Rev. B, 34, 475 (1986).Google Scholar
15. see Liu, e.g. G., Li, Y., Jonas, J., J. Chem. Phys., 95, 6892 (1991).Google Scholar
16. Mauger, A., Mills, D.L., Phys. Reb. B, 27, 7736 (1983).Google Scholar