Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:07:37.787Z Has data issue: false hasContentIssue false

Renormalization from Density Functional Theory to Strong Coupling Models for the Electronic Structure of La2CuO4

Published online by Cambridge University Press:  28 February 2011

Mark S. Hybertsen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Michael Schluter
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
E.B. Stechel
Affiliation:
Solid State Theory Division 1151, Sandia National Laboratories, Albuquerque, NM 87185
D.R. Jennison
Affiliation:
Solid State Theory Division 1151, Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Strong coupling models for the electronic structure of La2CuO4 are derived in two successive stages of renormalization. First, a three-band Hubbard model is derived using a constrained density functional approach. Second, exact diagonalization studies of finite clusters within the three band Hubbard model are used to select and map the low energy spectra onto effective one-band Hamiltonians. At each stage, some observables are calculated and found to be in quantitative agreement with experiment. The final results suggest the following models to be adequate descriptions of the low energy scale dynamics: (1) a spin 1/2 Heisenberg model for the insulating case with nearest neighbor J≈130 meV; (2) a "t–t'–J" model with nearly identical parameters for the electron and hole doped cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Anderson, P.W., et al. , Phys. Rev. Lett. 58, 2790 (1987).Google Scholar
2 Emery, V.J., Phys. Rev. Lett. 58, 3759 (1987).Google Scholar
3 Varma, C.M., Schmitt‐Rink, S., and Abrahams, E., Solid State Commun. 62, 681 (1987).Google Scholar
4 Zhang, F.C. and Rice, T.M., Phys. Rev. B 37, 3759 (1988).Google Scholar
5 Stechel, E.B. and Jennison, D.R., Phys. Rev. B 38, 4632 (1988).Google Scholar
6 Lee, P.A., Phys. Rev. Lett. 63, 680 (1989).Google Scholar
7 Cohen, R.E., Pickett, W.E., and Krakauer, H., Phys. Rev. Lett. 62, 831 (1989).Google Scholar
8 Mattheiss, L.F., Phys. Rev. Lett. 58, 1028 (1987); J.Yu, A.J. Freeman, and J.‐H. Xu, Phys. Rev. Lett. 58, 1035 (1987).Google Scholar
9 Hybertsen, M.S., Schluter, M., and Christensen, N.E., Phys. Rev. B 39, 9028 (1989).Google Scholar
10 McMahan, A.K., Martin, R.M. and Satpathy, S., Phys. Rev. B 38, 6650 (1989).Google Scholar
11 van der Marel, D., et al. , Phys. Rev. B 37, 5136 (1988).Google Scholar
12 Humlicek, J., Garriga, M., and Cardona, M., Sol. Stat. Comm. 7, 589 (1988).Google Scholar
13 Singh, R.R.P., et al. , Phys. Rev. Lett. 62, 2736 (1989).Google Scholar
14 The singlet is treated as a doubly occupied site for sign purposes. If it is treated as a vacancy in the ”t–t'–J” model instead, then the signs of t, t ‘ are reversed from Eq. (3) for the hole case.Google Scholar
1 Anderson, P.W., et al. , Phys. Rev. Lett. 58, 2790 (1987).Google Scholar
2 Emery, V.J., Phys. Rev. Lett. 58, 3759 (1987).Google Scholar
3 Varma, C.M., Schmitt‐Rink, S., and Abrahams, E., Solid State Commun. 62, 681 (1987).Google Scholar
4 Zhang, F.C. and Rice, T.M., Phys. Rev. B 37, 3759 (1988).Google Scholar
5 Stechel, E.B. and Jennison, D.R., Phys. Rev. B 38, 4632 (1988).Google Scholar
6 Lee, P.A., Phys. Rev. Lett. 63, 680 (1989).Google Scholar
7 Cohen, R.E., Pickett, W.E., and Krakauer, H., Phys. Rev. Lett. 62, 831 (1989).Google Scholar
8 Mattheiss, L.F., Phys. Rev. Lett. 58, 1028 (1987); J.Yu, A.J. Freeman, and J.‐H. Xu, Phys. Rev. Lett. 58, 1035 (1987).Google Scholar
9 Hybertsen, M.S., Schluter, M., and Christensen, N.E., Phys. Rev. B 39, 9028 (1989).Google Scholar
10 McMahan, A.K., Martin, R.M. and Satpathy, S., Phys. Rev. B 38, 6650 (1989).Google Scholar
11 van der Marel, D., et al. , Phys. Rev. B 37, 5136 (1988).Google Scholar
12 Humlicek, J., Garriga, M., and Cardona, M., Sol. Stat. Comm. 7, 589 (1988).Google Scholar
13 Singh, R.R.P., et al. , Phys. Rev. Lett. 62, 2736 (1989).Google Scholar
14 The singlet is treated as a doubly occupied site for sign purposes. If it is treated as a vacancy in the ”t–t'–J” model instead, then the signs of t, t ‘ are reversed from Eq. (3) for the hole case.Google Scholar