Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:55:28.088Z Has data issue: false hasContentIssue false

Remaining Uncertainties in Predicting Long-Term Performance of Nuclear Waste Glass From Experiments

Published online by Cambridge University Press:  25 February 2011

B. Grambow
Affiliation:
Institut für Nukleare Entsorgungstechnik, Postfach 3640, D-76021 Karlsruhe
Kernforschungszentrum Karlsruhe
Affiliation:
Institut für Nukleare Entsorgungstechnik, Postfach 3640, D-76021 Karlsruhe
Get access

Abstract

The current knowledge on the glass dissolution mechanism and the representation of glass dissolution concepts within overall repository performance assessment models are briefly summarized and uncertainties related to mechanism, radionuclide chemistry and parameters are discussed. Understanding of the major glass dissolution processes has been significantly increased in recent years. Long-term glass stability is related to the long-term maintenance of silica saturated conditions. The behavior of individual radionuclides in the presence of a dissolving glass has not been sufficiently and results do not yet allow meaningful predictions. Conservative long-term predictions of glass matrix dissolution as upper limit for radionuclide release can be made with sufficient confidence, however these estimations generally result in a situation were the barrier function of the glass is masked by the efficiency of the geologic barrier. Realistic long-term predictions may show that the borosilicate waste glass contributes to overall repository safety to a much larger extent than indicated by overconservatism. Today realistic predictions remain highly uncertain and much more research work is necessary. In particular the long-term rate under silica saturated conditions needs to be understood and the behavior of individual radionuclides in the presence of a dissolving glass deserves more systematic investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lutze, W.; “Silicate Glasses”, in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C., Elsevier Science Publishers B.V., Amsterdam (1988) pp. 1160 Google Scholar
2 Cunnane, J.C. ed. “High-Level Waste Borosilicate Glass: A Compendium of Corrosion Characteristics, Vols. I-III”; Argonne National Laboratory, in preparation (1993)CrossRefGoogle Scholar
3 Boksay, Z., Bouquet, G. and Dobos, S., “Diffusion Processes in the Surface Layer of Glasses”, Phys.Chem.Glasses, 8, 4, pp. 140144, (1967)Google Scholar
4 Doremus, R.H. “Interdiffusion of Hydrogen and Alkali Ions”, J.Non Cryst.Solids, 19, pp. 137144 (1975)CrossRefGoogle Scholar
5 Bunker, B.C., Arnold, G.W. and Beauchamp, E.K.. “Mechanisms for Alkali Leaching in Mixed-Na-K Silicate glasses.” Journal of Non-Crystalline Solids 58, pp. 295322, North Holland. (1983)Google Scholar
6 Dran, J.-C, Petit, J.-C., Trotignon, L., Paccagnella, A., and Delia Mea, G., “Hydration Mechanisms of Silicate Glasses: Respective Role of Ion Exchange and Water Permeation”; Mat. Res. Soc. Symp. Proc. 127 2532 (1989)CrossRefGoogle Scholar
7 Feng, X., Pegg, “I.L., Barkatt, A.A., Macedo, P.B., Cucinell, S.J., and Lai, S.; “Correlation between Composition Effects on Glass Durability and the Structural Role of Constituent Oxides”; Nucl. Technol., 85, 334345 (1989)CrossRefGoogle Scholar
8 Grambow, B., “Geochemical Approach to Glass Dissolution”; in Corrosion of Glass. Ceramics and Ceramic Semiconductors, edited by Clark, D.E. and Zoitos, B.K., Noyes Publications, Park Ridge, N.J., USA (1992)Google Scholar
9 Chick, L.A., Pederson, L.R., “The Relationship Between Reaction Layer Thickness and Leachrate for Nuclear Waste Glasses”, Mat. Res. Soc. Symp. Proc. Vol.26, Elsevier Science Publishing Co., Inc. pp. 635642, (1984)Google Scholar
10 Grambow, B., “Influence of Saturation on the Leaching of Borosilicate Nuclear Waste Glasses”, Int. Congr. Glass, 13th, Glas Techn. Ber, LVIK, (1983)Google Scholar
11 Vernaz, E.Y. and Dussossoy, J-L., “Current State of Knowledge of Nuclear Waste Glass Corrosion Mechanism: The Case of R7T7 Glass”, Appl. Geochem., Suppl. Issue No. 1, pp. 1322 (1992)Google Scholar
12 Advocat, T., Crovisier, J.L., Fritz, B. and Vernaz, E., “Thermokinetic model of borosilicate glass dissolution: Contextual Affinity”, Mat. Res. Soc. Symp. Proc. Vol 176, pp. 241–48, Materials Research Society, Pittsburgh, PA, USA (1990)Google Scholar
13 Bourcier, W.L., Peiffer, D.W., Knauss, K.G., McKeegan, K.D. and Smith, D.K., “A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer”. Mat. Res. Soc. Symp. Proc. Vol 176, pp. 209216, Materials Research Society, Pittsburgh, PA, USA (1990)Google Scholar
14 Grambow, B., Lutze, W. and Müller, R., “Empirical Dissolution Rate Law for the Glass R7T7 Contacting Halite- and Silica-Saturated Brines”, Mat. Res. Soc. Symp. Proc. 257, (1992) pp. 143150 CrossRefGoogle Scholar
15 Bates, J.K.; Abrajano, T.A., Ebert, W.L., Mazer, J.J. and Gerding, T.J., “Experimental Hydration Studies of Natural and Synthetic Glasses”, Mat. Res. Soc. Symp. Proc. 123 (1988) pp. 237244 CrossRefGoogle Scholar
16 Vernaz, E.Y. and Godon, N.; “Leaching of Actinides from Nuclear Waste Glass: French Experience”; Mat. Res. Soc. Symp. Proc. Vol. 257 (1991) pp. 3748 CrossRefGoogle Scholar
17 JSS-1988, JSS-Project Phase V: Final Report, “Testing and Modelling of the Corrosion of Simulated Nuclear Waste Glass Powders in a Waste Package Environment”; JSS Project Technical Report 88–02, Stockholm, Sweden (1988)Google Scholar
18 Marples, J.A.C.; Godon, N., Lanza, F. and Van Iseghem, P.; “Radionuclide Release from High-Level Waste Forms under Repository Conditions in Clay or Granite”; in Radioactive Waste Management and Disposal (Cecile, L. ed.) Elsevier, Amsterdam (1991) pp. 287301 Google Scholar
19 Lutze, W., Grambow, B.; “The Effect of Glass Corrosion on Near Field pH”; Radiochimica Acta 58/59, 37 (1992)CrossRefGoogle Scholar
20 Plodinec, M.J.; Jantzen, C.M., Wicks, G.G.; “Thermodynamic Approach to Prediction of the Stability of Proposed Radioactive Waste Glasses”, Adv. Ceram. 8,491495 (1984)Google Scholar
21 Advocat, T.; Crovisier, J.L., Vernaz, E., Ehret, G., Charpentier, H., “Hydrolysis of R7T7 Nuclear Waste Glass in Dilute Media: Mechanism and Rate as a Function of pH”; Mat. Res. Soc. Symp. Proc. 212, 5764 (1961)CrossRefGoogle Scholar
22 Grambow, B.; Lutze, W., Ewing, R.C., Werme, L.O., “Performance Assessment of Glass as a Long-Term Barrier to the Release of Radionuclides to the Environment”; Mat. Res. Soc. Symp. Proc. 112, 531540 (1988)CrossRefGoogle Scholar
23 Van Iseghem, P.; Grambow, B.; “The Long-Term Corrosion and Modelling of Two Simulated Belgian Reference High-Level Waste Glasses”, Mat. Res. Soc. Symp. Proc. 112, 631639 (1988)CrossRefGoogle Scholar
24 Bibler, N.E.; Jantzen, C.M.; “Materials Interactions Relating to Long-Term Geologic Disposal of Nuclear Waste Glass”; Mat. Res. Soc. Symp. Proc. 84, 4766 (1987)CrossRefGoogle Scholar
25 McVay, G.L. and Buckwalter, C.Q., J. Amer. Ceram. Soc. 66, 170174 (1983)CrossRefGoogle Scholar
26 Grambow, B.; Zwicky, H.U., Bart, G., Björner, I.K., Werme, L.O., “ modelling the Effect of Iron Corrosion Products on Nuclear Waste Glass performance”; Mat. Res. Soc. Symp. Proc. 84, 471481 (1987)CrossRefGoogle Scholar
27 Bates, J.K.; Gerding, T.J., and Woodland, A.B.; “Parametric Effects of Glass Reaction under Unsaturated Conditions”; Mat. Res. Soc. Symp. Proc. 176, 347354 (1990)CrossRefGoogle Scholar
28 Jantzen, C.M. “Methods of Simulating Low Redox Potential (Eh) for a Basalt Repository”; Mat. Res. Soc. Symp. Proc. 26 613621 (1984)CrossRefGoogle Scholar
29 Vernaz, E. and Godon, N.; “Key Parameters of Glass Dissolution in Integrated Systems”; Mat. Res. Soc. Symp. Proc. 212, 1930 (1991)CrossRefGoogle Scholar
30 Grambow, B., Hermanson, H.P., Björner, I.K. and Werme, L.O., Mat. Res. Soc. Symp. Proc. 50, 187194 (1985)CrossRefGoogle Scholar
31 Curti, E.; Godon, N. and Vernaz, E.; “Enhancement of the Glass Corrosion in the Presence of Clay Materials: Testing Experimental Results with an Integrated Glass Dissolution Model”, Mat. Res. Soc. Symp. Proc. 294, 163170 (1993)CrossRefGoogle Scholar
32 Bates, J.K.; Ebert, W.L., Gerding, T.J., “ Vapor Hydration and Subsequent Leaching of Transuranic-Containing SRL and WV Glasses”, Proc. of the Int. High-Level Radioactive Waste Management Conf, Am Nucl. Soc, Las Vegas, NV, April 8-12, p. 1095 (1990)Google Scholar
33 Helgeson, H.C., “Mass Transfer Among Silicates and Aqueous solutions”, Geochim. et Cosmochim. Acta, Vol. 35, pp. 421469, (1971)CrossRefGoogle Scholar
34 Wollast, R., “Kinetics of the Alteration of K-Feldspar in Buffered Solutions at Low Temperature”, Geochim. et. Cosmochim. Acta, Vol. 31, pp.635648, (1967)CrossRefGoogle Scholar
35 Allen, C.C. “Stability and Alteration of Naturally Occurring Silica Glasses: Implications for the Long-Term Stability of Waste Form Glasses”; in Scientific Basis for Nuclear Waste Management V, ed. Lutze, W., North-Holland, New York, (1982)Google Scholar
36 Malow, G. “The Mechanisms for Hydrothermal Leaching of Nuclear Waste Glasses: Properties and Evaluation of Surface Layers.” in Scientific Basis for Nuclear Waste Management V, ed. Lutze, W., North-Holland, New York, (1982)Google Scholar
37 Petrovic, R., “Rate Control in Feldspar Dissolution III. The Protective Effect of Precipitates”, Geochim. et Cosmochim. Acta, Vol. 40, pp. 15091521, (1976)CrossRefGoogle Scholar
38 Berner, R.A., and Holdren, G.R., “Mechanism of Feldspar Weathering II. Observations of Feldspars from Soils”, Geochim. et. Cosmochim. Acta, Vol. 43, pp. 11731186, (1979)CrossRefGoogle Scholar
39 Grambow, B. and Strachan, D.M.. “Leach Testing of Waste Glasses under Near Saturation Conditions”, in Scientific Basis for Nuclear Waste Management VII, ed. McVay, G.L., North-Holland, New York, (1984)Google Scholar
40 Chick, L.A., Pederson, L.R., “The Relationship Between Reaction Layer Thickness and Leachrate for Nuclear Waste Glasses”, Mat. Res. Soc. Symp. Proc. Vol.26, Elsevier Science Publishing Co., Inc. pp. 635642, (1984)CrossRefGoogle Scholar
41 Aagaard, P., Helgeson, H.C.. “Thermodynamic and Kinetic Constraints on the Reaction Rates Among Minerals and Aqueous Solutions. I. Theoretical Considerations.” Am. J. Sci. Vol. 281, pp. 237285, (1982)CrossRefGoogle Scholar
42 Grambow, B. “A General Rate Equation for Nuclear Waste Glass Corrosion”, in Scientific Basis for Nuclear Waste Management VIII. edited by Jantzen, C. M., Stone, J. A., and Ewing, R. C. (Mater. Res. Soc. Proc. 44, Pittsburgh, PA 1985) pp. 1524.Google Scholar
43 Bourcier, W.L., “Overview of Chemical Modeling of Nuclear Waste Glass Dissolution”, Mat. Res. Soc. Symp. Proc. 212, pp. 318 (1991)CrossRefGoogle Scholar
44 Ross, W.A. and Mendel, J.E., “Annual Report on the Development and Characterization of Solidified Forms for High-Level Wastes 1978”, Pacific Northwest Laboratory Report PNL-3060 (1979)CrossRefGoogle Scholar
45 Peters, R.D. and Slate, S.C., “Fraturing of Simulated High-Level Waste Glass in Canisters”. Pacific Northwest Laboratory Report PNL-3948 (1981)CrossRefGoogle Scholar
46 Laude, F.A., Vernaz, E. and Saint-Gaudens, M., in Scientific Basis for Nuclear Waste Management V. Vol. 11, Lutze, W. ed., North-Holland, Amsterdam (1982) p. 239 Google Scholar
47 Materials Characterisation Center, “MCC-1) Static Leach Test Method”, Nuclear Waste Materials Handbook Test Methods, Pathific Northwest Laboratory Report DOE/TIC-11400 (1985)Google Scholar
48 Bickford, D.F. and Pellarin, D.J., “Large Scale Leach Testing of DWPF Canister Sections”, Mat. Res. Soc. Symp. Proc. 84 ( 1987) pp. 509518 CrossRefGoogle Scholar
49 Grambow, B.; M, Jercinovic, Ewing, R.C., Beyers, C.D., “Weathered Basalt Glass: A Natural Analogue for the Effects of Reaction Progress on Nuclear Waste Glass”; Mat. Res. Soc. Symp. Proc. Vol. 50 (1985) pp. 263272 CrossRefGoogle Scholar
50 Watson, L.C., Aikin, A.M. and Bancroft, A.R., “The Permanent Disposal of Highly Radioactive Wastes by Incorporation into Glass”; in Disposal of Radioactive Wastes. Vol. I, IAEA, (1960), pp. 375393 Google Scholar
51 Godbee, H.W., Fitzgerald, C.L., Blomeke, J.O., Blanco, R.E.; “Diffusion of radioisotopes through waste solids”, Trans. Amer. Nucl. Soc, 12, No.2 (1969) p. 450 Google Scholar
52 Godbee, H.W., Joy, D.S.; “Assessment of the Loss of Radioactive Isotopes From Waste Solids to the environment. Part I: Background and Theory” ORNL-TM-4333, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA (1974)Google Scholar
53 Ewest, E.; “Calculations of Radioactivity Release due to Leaching of Vitrified High Level Waste”, Scientific Basis for Nuclear Waste Management. Vol. I, McCarthyed., G.J., Plenum Press, N.Y. (1979)Google Scholar
54 Altenheim, F.K., Lutze, W. and Ewing, R.C.; “Long-term Radioactivity release from Solidified High Level Waste - Part I: an Approach to Evaluating Experimental Data”, Scientific Basis for Nuclear Waste Management. Vol. V, Lutze, W. ed., North Holland, N.Y. (1982) pp. 4556 Google Scholar
55 Altenheim, F.K., Lutze, W. and Ewing, R.C.; “Long-term Radioactivity release from Solidified High Level Waste - Part II Parametric Study of Waste Form Properties, Temperature and Time”, Scientific Basis for Nuclear Waste Management. Vol. VI, Brookins, D.G. ed., North Holland, N.Y. (1983) pp. 269280 Google Scholar
56 Cadelli, N., Girardi, F. and Saltelli, A., “PAGIS: Performance Assessment of Geological Isolation Systems”; in Safety Assessment of Radioactive Waste Repositories. Proceedings of the Paris Symposium, OECD/NEA, Paris (1990) pp. 229236 Google Scholar
57 Marivoet, J.; “Updating 1990”; NIRAS/ONDRAF - SCK/CEN report BLG 634, Mol, Belgium (1992)Google Scholar
58 Bonne, A. in “Sitzungsbericht des PAGIS-Informationstages, Madrid 1989”; EUR 12676 DE, Commission of the Europeen Communities, Brussels-Luxembourg (1990)Google Scholar
59 Freude, E.; “Quellterm für die Mobilisierung von Radionukliden aus verglastem HAW”, in Projekt Sicherheitsstudien Entsorgung (PSE), Abschlußbericht: Fachband 10, Hahn-Meitner Institut Berlin, Berlin (1985)Google Scholar
60 Storck, R., Aschenbach, J., Hirsekorn, R.P., Nies, A., Stelte, N.: “Performance Assessment of Geological Isolation Systems for Radioactive Waste (PAGIS): Disposal in Salt Formations.” EUR 11778 EN, Commission of the European Communities, Brussels-Luxembourg (1991)Google Scholar
61 Hirsekorn, R.-P., Nies, A., Rausch, H., Storck, R.: “Performance Assessment of Confinements for Medium-Level and Alpha-Contaminated Waste (PACOMA). Rock Salt Option.” EUR 13634 EN, Commission of the European Communities, Brussels-Luxembourg (1991)Google Scholar
62 Buhmann, D., Nies, A. and Storck, R.: “Systemanalyse Mischkonzept (SAM), Abschlußbericht - Technischer Anhang 7, Analyse der Langzeitsicherheit von Endlagerkonzepten für wärmeerzeugende radioaktive Abfálle”; KAW-Nr. 5702 A, (1991)Google Scholar
63 Brenner, J., Buhmann, D., Storck, R.; “Erfahrung mit Quelltermen für HAW-Wiederaufarbeitungsabfall in Langzeitsicherheitsanalysen von Endlagern” GSF ... (1993)Google Scholar
64 Haderman, J., McCombie, C., McKinley, I.G. and Zuidema, P.; “Safety Assessment of HLW Disposal in Switzerland: Lessons Learned”, in Safety Assessment of Radioactive Waste Repositories, Proceedings of the Paris Symposium, OECD/NEA, Paris (1990) pp. 201210 Google Scholar
65 NAGRA, , “Projekt Gewähr 1985” Projektbericht NGB 85-04, Baden, Switzerland (1985)Google Scholar
66 de Marsily, G., et al. “Radiological Assessmnet of the Consequences of the Disposal of High Level Radioactive Waste in Sub-Seabed Sediments”, in Safety Assessment of Radioactive Waste Repositories. Proceedings of the Paris Symposium, OECD/NEA, Paris (1990) pp. 283296 Google Scholar
67 Westik, J.H. and Peters, R.D., “Time and Temperature Dependence of the Leaching of a Simulated High-Level Waste Glass”, in Scientific Basis for Nuclear Waste Management Vol. III, Moore, G. ed., Elsevier Science, New York, pp. 355362 (1982)Google Scholar
68 Vernaz, E.Y., Dussossoy, J.L., Fillet, S., “Temperature Dependence of R7T7 Nuclear Waste Glass Alteration Mechanisms”, Mat. Res. Soc. Symp. Proc. 112, pp. 555563 (1988)CrossRefGoogle Scholar
69 Delage, F. and Dussossoy, J.L., “R7T7 Glass Initial Dissolution Rate Measurements Using a High-Temperature Soxhlet Device”, Mat. Res. Soc. Symp. Proc. 212, pp. 4147 (1991)CrossRefGoogle Scholar
70 Feng, X., Bates, J.K., Bradley, C.R. and Buck, E.C., “Does Fully Radioactive Glass Behave Differently than Simulated Waste Glass?” Mater. Res. Soc. Symp. Proc. 294, (1993) pp. 207214 CrossRefGoogle Scholar
71 JSS-Project Phase V: Final Report, “Testing and Modelling of the Corrosion of Simulated Nuclear Waste Glass Powders in a Waste Package Environment”; JSS Project Technical Report 88-02, Stockholm, Sweden (1988) pp. 8687 Google Scholar