No CrossRef data available.
Published online by Cambridge University Press: 16 June 2015
The stability of green phosphorescent OLEDs with different structures was evaluated through constant-current stressing. Through the modifications of the ITO anode by different plasma treatments and the hole transport layer (HTL) by incorporating inorganic dopants, we proved that energy level misalignment at the ITO/HTL interface leads to localized joule heating, accelerating defect generation and luminescence decay. Pulsed current stressing was then employed to suppress the joule-heating effect so as to differentiate the thermal and nonthermal factors governing the device degradation. For OLEDs with a large energy barrier at the ITO/HTL interface, the effective lifetime was markedly increased under pulsed operation, whereas in OLEDs with an appropriate interfacial energy level alignment, pulsed stressing with 10% duty cycle only improved the effective half life by ∼15% as compared to continuous-wave stressing, indicating a minor role played by joule heating.