Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T09:50:26.466Z Has data issue: false hasContentIssue false

Relaxation of Mismatched InxAl1−xAs/InP Heterostructures

Published online by Cambridge University Press:  26 February 2011

Brian R. Bennett
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Jesús A. del Alamo
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We have investigated the relaxation of intentionally mismatched layers of InxAl1−x-As on InP. The layers were grown by MBE and characterized by double-crystal x-ray diffraction (DCXRD) and variable azimuthal angle ellipsometry. Measurements of DCXRD epitaxial layer peak width show high crystalline quality for layers up to five times the Matthews-Blakeslee critical layer thickness. For thicker layers, relaxation occurs with a change in crystal symmetry from tetragonal to orthorhombic. We attribute this to an asymmetry in misfit dislocation density. Ellipsometry reveals optical anisotropy for mismatched layers in compression, but not in tension.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bahl, S. R., Azzam, W. J., and del Alamo, J. A., IEEE Trans. Electon Devices, 38, 1986 (1991); J. Crystal Growth, 111, 479 (1991).Google Scholar
2. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth, 27, 118 (1974). For this study, we modified the Matthews-Blakeslee expression for the case of a single epilayer on a substrate, taking into account the crystalline anisotropy;Google Scholar
see Fitzgerald, E. A., PhD thesis, Cornell University, 1989.Google Scholar
3. Swaminathan, V. and Macrander, A. T., Materials Aspects of GaAs and InP Based Structures, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 181232.Google Scholar
4. Kavanagh, K. L. et al, J. Apl. Phys, 64, 4843 (1988).Google Scholar
5. Bennett, B. R. and del Alamo, J. A. J. Electron. Mat, 20, 1075 (1991).Google Scholar
6. Eq. (2) uses the most recent measurements of the lattice constant of AlAs: Goorsky, M. S. et al., Appl. Phys. Lett, 59, 2269 (1991);Google Scholar
Tanner, B. K. et al., J. Electron. Mat, 69, 2272 (1991).Google Scholar
7. Bennett, B. R. and del Alamo, J. A., Appl. Phys. Lett, 58, 2978 (1991).Google Scholar
8. Dynamical diffraction simulation program RADS from Bede Scientific.Google Scholar
9. Fitzgerald, E. A. et al., J. Appl. Phys, 65, 2220 (1989).Google Scholar
10. Grundmann, M., Lienert, U., Bimberg, D., Fischer-Colbrie, A., and Miller, J. N., Appl. Phys. Lett, 55, 1765 (1989); (E), 57, 2034 (1990).Google Scholar
11. Turnbull, A. G., Green, G. S., Tanner, B. K., and Halliwell, M. A. G. in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Proc. 202, Pittsburg, PA, 1991) pp. 513518.Google Scholar
12. For the Sumitomo wafers used in this study, the majority of dislocations are parallel to the major flat.Google Scholar
13. Orders, P. J. and Usher, B. F., Appl. Phys. Lett, 50, 980 (1987).Google Scholar
14. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
15. Fritz, I. J., Appl. Phys. Lett, 51, 1080 (1987).Google Scholar
16. Acher, O. et al., J. Appl. Phys. 68, 3564 (1990).Google Scholar
17. Aspnes, D. E., Bennett, B. R., and del Alamo, J. A. (unpublished).Google Scholar
18. Lievin, J. -L. and Fonstad, C. G., Appl. Phys. Lett, 51, 1173 (1987).Google Scholar
19. Broekaert, T. P. E., PhD Thesis, M. I. T., 1992.Google Scholar