Published online by Cambridge University Press: 25 February 2011
With X-ray diffraction techniques, it is possible to routinely measure lattice parameters to several parts in 104 for macroscopic specimens. However, measurements of lattice parameter changes for quaternary (InGaAsP) device structures several microns in width are not usually feasible with X-ray diffraction techniques. Convergent Beam Electron Diffraction (CBED), which is one of the techniques available on a modern transmission electron microscope (TEM), may be sensitive to these small, localized lattice parameter changes. Unfortunately, dynamical diffraction effects prevent direct extraction of changes in the lattice parameter from CBED patterns which are obtained from high atomic number materials. For this reason, we have chosen to calibrate the relative position of CBED features with X-ray lattice parameter measurements which were obtained from planar quaternary layers grown on InP substrates. For the active quaternary region of an electro-optical device structure, it is shown that this approach may be sensitive to a relative change in the lattice parameter as small as ±2 parts in 104, which is the uncertainty in the X-ray calibration measurements.