Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:50:53.728Z Has data issue: false hasContentIssue false

Relative Lattice Parameter Measurement in Quaternary (InGaAsP) Layers on InP Substrates Using Convergent Beam Electron Diffraction

Published online by Cambridge University Press:  25 February 2011

M. E. Twigg
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. C. Joy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. M. Maher
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. T. Macrander
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. Nakahara
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. K. Chin
Affiliation:
Now at Polaroid Microelectronics Materials Center, Cambridge, MA 02139
Get access

Abstract

With X-ray diffraction techniques, it is possible to routinely measure lattice parameters to several parts in 104 for macroscopic specimens. However, measurements of lattice parameter changes for quaternary (InGaAsP) device structures several microns in width are not usually feasible with X-ray diffraction techniques. Convergent Beam Electron Diffraction (CBED), which is one of the techniques available on a modern transmission electron microscope (TEM), may be sensitive to these small, localized lattice parameter changes. Unfortunately, dynamical diffraction effects prevent direct extraction of changes in the lattice parameter from CBED patterns which are obtained from high atomic number materials. For this reason, we have chosen to calibrate the relative position of CBED features with X-ray lattice parameter measurements which were obtained from planar quaternary layers grown on InP substrates. For the active quaternary region of an electro-optical device structure, it is shown that this approach may be sensitive to a relative change in the lattice parameter as small as ±2 parts in 104, which is the uncertainty in the X-ray calibration measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steeds, J. W. in Introduction to Analytical Electron Microscopy, Ed. by Hren, , Goldstein, , & Joy, , Chapter 15, Plenum Press, New York (1979).Google Scholar
2. Ecob, R. D., Shaw, M. P., Porter, A. J., and Ralph, B., Phil. Mag., 44a, 1117 (1981).CrossRefGoogle Scholar
3. Fraser, H. L., Maher, D. M., Humphreys, C. J., Hetherington, C. J. D., Knoell, R. V., and Bean, J. C., Int. Phys. Conf. Ser., 76, 307 (1985).Google Scholar
4. Maher, D. M., Fraser, H. L., Humphreys, C. J., Knoell, R. V., and Bean, J. C., Int. Phys. Conf. Ser., 78, 49 (1985).Google Scholar
5. Twigg, M. E., Loretto, M. H., and Fraser, H. L., Phil. Mag., 43a, 1587 (1981).CrossRefGoogle Scholar
6. Chu, S. N. G. and Sheng, T. T., J. Electrochem. Soc., 131, 2663 (1984).Google Scholar
7. Chu, S. N. G., Macrander, A. T., Strenge, K. E., and Johnston, W. D. Jr., J. Appl. Phys., 57, 249 (1985).CrossRefGoogle Scholar
8. Macrander, A. T. and Strenge, K. E., J. Appl. Phys., 59, 442 (1986).CrossRefGoogle Scholar
9. Kelly, P. M., Jostons, A., Blake, R. G., and Napier, J. G., Phys. Stat. Sol., 31a, 771 (1975).CrossRefGoogle Scholar
10. Sirota, N. N., Antyukhon, A. M., and Siderov, A. A., Soy. Phys. Dokl., 29, 662 (1984).Google Scholar