Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T10:38:55.635Z Has data issue: false hasContentIssue false

Relationships Between Microstructure and Engineering Properties

Published online by Cambridge University Press:  25 February 2011

P. L. Pratt*
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London SW7 2BP, UK
Get access

Abstract

The calculation of such macroscopic engineering properties as elastic modulus and compressive strength for cement pastes and concrete depends upon the establishment of a realistic model of the microstructure. Increasingly complex models are considered, which appear capable of predicting the elastic modulus in terms of a modified Rule of Mixtures. The same models are able to account for the broad features of the compressive strength, because strength is always scaled by the elastic modulus of the material. The actual value of the compressive or the bend strength is determined by the mechanics of crack initiation and crack propagation in the particular test used. Crack initiation is controlled by the defects present in the material and crack propagation by the fracture toughness of the different phases and the porosity in the microstructure. Thus the strength depends upon microstructure in a number of different but interrelated ways, determined by the fracture toughness of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hornbogen, E., Acta Metall. 32, 615 (1984).Google Scholar
2. Hansen, T.C., J. Am. Concr. Inst. 62, 193 (1965).Google Scholar
3. Dougill, J.W., J. Am. Concr. Inst. 59, 1363 (1962).Google Scholar
4. Hirsch, T.J., J. Am. Concr. Inst. 59, 427 (1962).Google Scholar
5. Hashin, Z., J. App. Mech. 29, 143 (1962).Google Scholar
6. Powers, T.C., Rev. Mater. Constr. Trav. Publics 544, 79 (1961).Google Scholar
7. Helmuth, R.A. and Turk, D.H., in Symp. on Structure of Portland Cement Paste and Concrete, Special Report 90 (Highway Research Board, Washington, 1966) p. 135.Google Scholar
8. Martin, D.B. and Haynes, R.R., J. Am. Concr. Inst. 60, 26 (1971).Google Scholar
9. Kaplan, M.F., J. Am. Concr. Inst. 56, 853 (1960). 155Google Scholar
10. Hansen, T.C., Notes from a Seminar on Structure and Properties of Concrete, Technical Report No. 71 (Stanford University Civil Engineering Department, 1966).Google Scholar
11. Granju, J.L. and Maso, J.C., Cem. Concr. Res. 14, 539 (1984).Google Scholar
12. Ryshkewitch, E., J. Am. Ceram. Soc. 36, 65 (1963).Google Scholar
13. Sereda, P.J., Feldman, R.F. and Ramachandran, V.S., Proc. Int. Congr. Chem. Cem., 7th, 1980 1, VI-I/3, 1980.Google Scholar
14. Bal'shin, M.Y., Dokl. Akad Nauk. SSSR 67, 831 (1949).Google Scholar
15. Schiller, K.K., in Mechanical Properties of Non-Metallic Materials, edited by Walton, W.H. (Butterworths Sc. Publ., London, 1959) p. 35.Google Scholar
16. Uchikawa, H., Proc. Int. Congr. Chem. Cem., 8th, 1986 1, 249 (1986).Google Scholar
17. Rössler, M. and Odler, I., Cem. Concr. Res. 5, 320 (1985).Google Scholar
18. Hasselman, D.P.H., J. Am. Ceram. Soc. 46, 564 (1963).Google Scholar
19. Granju, J.L. and Maso, J.C., Cem. Concr. Res. 14, 249 (1984).Google Scholar
20. Granju, J.L. and Maso, J.C., Cem. Concr. Res. 14, 303 (1984).Google Scholar
21. Osbaeck, B. and Jons, E.S., Cem. Concr. Res. 12, 167 (1982).Google Scholar
22. Beaudoin, J.J. and Feldman, R.F., Cem. Concr. Res. 15, 105 (1985).Google Scholar
23. Jelenic, I., Panovic, A., Halle, R. and Gacesa, T., Cem. Concr. Res. 7, 239 (1977).Google Scholar
24. Relis, M. and Soroka, I., J. Am. Ceram. Soc. 63, 690 (1980).CrossRefGoogle Scholar
25. Yuin-Yuan, Huang, Wei, Ding and Ping, Lu, in Very High Strength Cement-Based Materials, edited by Young, J F. (MRS 42, Pittsburgh, 1985) p. 123.Google Scholar
26. Griffith, A.A., Philos. Trans. R. Soc. London A 221, 163 (1920).Google Scholar
27. Kendall, K., Howard, A.J. and Birchall, J.D., Philos. Trans. R. Soc. London A 310, 139 (1983).Google Scholar
28. Sammis, C.G. and Ashby, M.F., Acta Metall. 34, 511 (1986).Google Scholar
29. Eden, N.B. and Bailey, J.E., J. Mater. Sci. 19, 150 (1984).Google Scholar
30. Higgins, D.D. and Bailey, J.E., J. Mater. Sci. 11, 1995 (1976).Google Scholar
31. Meredith, H. and Pratt, P.L., in Special Ceramics 6 (British Ceramic Res. Assoc., 1975) p. 107.Google Scholar
32. Nadeau, J.S., Mindess, S. and Hay, J.M., J. Am. Ceram. Soc. 57, 51 (1974).CrossRefGoogle Scholar
33. Beaudoin, J.J., Cem. Concr. Res. 15, 988 (1985).Google Scholar
34. Baldie, K.D. and Pratt, P.L., in Cement-Based Composites: Strain Rate Effects on Fracture, edited by Mindess, S. and Shah, S.P. (MRS 64, Pittsburgh, 1986) p. 47.Google Scholar
35. Fuller, E.R. and Swanson, P.L., presented at Symposium M of the MRS Fall Meeting (1986).Google Scholar
36. Mai, Y.-W. and Cotterell, B., Cem. Concr. Res. 15, 995 (1985).Google Scholar
37. Knab, L.I., Clifton, J.R. and Ings, J.B., Cem. Concr. Res. 13, 383 (1983).Google Scholar