Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T08:08:16.696Z Has data issue: false hasContentIssue false

The Relationship Between Micropipes and Screw Dislocations in Pvt Grown 6H-Sic

Published online by Cambridge University Press:  15 February 2011

Jennifer Giocondi
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213, USA
Gregory S. Rohrer
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213, USA
Marek Skowronski
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213, USA
V. Balakrishna
Affiliation:
Northrop Grumman Science and Technology Center Pittsburgh, PA 15235, USA
G. Augustine
Affiliation:
Northrop Grumman Science and Technology Center Pittsburgh, PA 15235, USA
H. M. Hobgood
Affiliation:
Northrop Grumman Science and Technology Center Pittsburgh, PA 15235, USA
R. H. Hopkins
Affiliation:
Northrop Grumman Science and Technology Center Pittsburgh, PA 15235, USA
Get access

Abstract

The growth surface of a 6H-SiC boule, grown by physical vapor transport, was examined using scanning force microscopy. The dimensions of surface/micropipe intersections and screw dislocation Burgers vectors have been determined from topographic data. All micropipes are positioned along the lines of super screw dislocations with a Burgers vectors of at least 4 times the c-axis repeat distance (15.2 Å). Perfect c-axis screw dislocations with Burgers vectors of only 15.2 Å are stable and do not have open cores. Measurements show that micropipe core radii, determined indirectly from the width of the craters formed at the surface/micropipe intersections, increase with the square of the dislocation Burgers vector.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barrett, D.L., McHugh, J.P., Hobgood, H.M., Hopkins, R.H., McMullin, P.G., Clarke, R.C., Choyke, W.J., J. Cryst. Growth 128, 358 (1993).Google Scholar
[2] Hobgood, H.M., Barrett, D.L., McHugh, J.P., Clarke, R.C., Sriram, S., Burk, A.A., Greggi, J., Brandt, C.D., Hopkins, R.H., Choyke, W.J., J. Cryst. Growth 137, 181 (1994).Google Scholar
[3] Powell, J. A., Neudeck, P. G., Larkin, D. J., Yang, J. W. and Pirouz, P., Inst. Phys. Conf. Ser., 137, 161 (1994).Google Scholar
[4] Frank, F. C., Acta Cryst. 4, 497 (1951).Google Scholar
[5] Verma, A.R., Crystal Growth and Dislocations, (Butterworths, London, 1953).Google Scholar
[6] Tanaka, H., Uemura, Y., Inomata, Y., J. Cryst. Growth 53, 630 (1981).Google Scholar
[7] Dudley, M., Wang, S., Huang, W., Jr., C.H. Carter, Tsvetkov, V.F., and Fazi, C., J. Phys. D: Appl. Phys. 28, A63 (1995).Google Scholar
[8] Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Applied Physics Letters 67, 2284 (1995).Google Scholar
[9] Rohrer, G. S., Payne, J., Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., in GaN and Related Materials edited by Dupuis, R.D., Ponce, F.A., Edmond, J.A., and Nakamura, S. (Mater. Res. Soc. Proc., Pittsburgh, PA, 1996), in press.Google Scholar
[10] Lambrect, W.R.L., Segall, B., Methfessel, M., and Schilfgaarde, M.v., Phys. Rev. B44, 3685 (1991).Google Scholar
[11] Wenzien, B., Käckell, P., Bechftebt, F., Surface Science 307, 989 (1994).Google Scholar
[12] Müller-Krumbhaar, H., Burkhardt, T., and Kroll, D., J. Crystal Growth 38, 13 (1977).Google Scholar
[13] Cabrera, N., Levine, M.M., and Plaskett, J.S., Phys. Rev. 96, 1153 (1954).Google Scholar