Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:54:03.812Z Has data issue: false hasContentIssue false

Relationship Between Interface Structure and Schottky Barrier Height

Published online by Cambridge University Press:  21 February 2011

R. T. Tung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N. J. 07974
J. P. Sullivan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N. J. 07974
F. Schrey
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N. J. 07974
Get access

Abstract

The clear dependence of the Schottky barrier height (SBH) on the structure of a metalsemiconductor (MS) interface is described for a few high-quality epitaxial MS systems. Polycrystalline MS interfaces, for which such a dependence is often absent, are shown to display clear evidence for SBH inhomogeneity, in direct conflict with the Fermi level (FL) pinning concept they helped to create. Recent theoretical calculations show that many basic tenets of the interface state pinning models are unfounded. The redistribution of charge as a result of bonding at the MS interface seems to be the most important contribution to the interface dipole and, hence, the SBH.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, Clarendon Press, Oxford, 1988.Google Scholar
2 Bardeen, J., Phys. Rev. 771, 717 (1947).Google Scholar
3 Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P. W., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
4 Daw, M. S. and Smith, D. L., Solid-St. Commun. 37, 205 (1981).Google Scholar
5 Heine, V., Phys. Rev. A 138, 1689 (1965).CrossRefGoogle Scholar
6 Tejedor, C., Flores, F., and Louis, E., J. Phys. C 10, 2163 (1977).Google Scholar
7 Tung, R. T., Lett., Phys. Rev. 52, 461 (1984).Google Scholar
8 Hauenstein, R. J., Schlesinger, T. E., McGill, T. C., Hunt, B. D., and Schowalter, L. J., Appl. Phys. Lett. 47, 853 (1985).CrossRefGoogle Scholar
9 Ospelt, M., Henz, J., Flepp, L., and von Känel, H., Appl. Phys. Lett. 52, 227 (1988).CrossRefGoogle Scholar
10 Tung, R. T., Levi, A. F. J., Sullivan, J. P., and Schrey, F., Phys. Rev. Lett. 66, 72 (1991).Google Scholar
11 Sullivan, J. P., Tung, R. T., Eaglesham, D. J., Schrey, F., and Graham, W. R., J. Vac. Sci. Technol. B 11, 1564 (1993).Google Scholar
12 Sullivan, J. P., Graham, W. R., Schrey, F., Eaglesham, D. J., Kola, R., and Tung, R. T., MRS Symp. Proc. 320, in press (1994).Google Scholar
13 Heslinga, D. R., Weitering, H. H., van der Werf, D. P., Klapwijk, T. M., and Hibma, T., Phys. Rev. Lett. 64, 1585 (1990).CrossRefGoogle Scholar
14 Weitering, H. H., Sullivan, J. P., Carolissen, R. J., Graham, W. R., and Tung, R. T., Appl. Surface Sci. 70/71, 422 (1993).Google Scholar
15 Griffiths, C. L., Anyele, H. T., Matthai, C. C., Cafolla, A. A., and Williams, R. H., J. Vac. Sci. Technol. B 11, 1559 (1993).Google Scholar
16 Palmstrom, C. J., Cheeks, T. L., Gilchrist, H. L., Zhu, J. G., Carter, C. B., Wilkens, B. J., and Martin, R., J. Vac. Sci. Technol. A 10, 1946 (1992).Google Scholar
17 Ludeke, R., -C. Chiang, T., and Eastman, D. E., J. Vac. Sci. Technol. 21, 599 (1982).Google Scholar
18 Cho, A. Y. and Dernier, P. D., J. Appl. Phys. 49, 3328 (1978).Google Scholar
19 Wang, W. I., J. Vac. Sci. Technol. B 1, 574 (1983).Google Scholar
20 Hirose, K., Akimoto, K., Hirosawa, I., Mizuki, J., Mizutani, T. and J., Matsui, Phys. Rev. B 43, 4538 (1991).Google Scholar
21 Das, G. P., Blöchl, P., Andersen, O. K., Christensen, N. E., and Gunnarsson, O., Phys. Rev. Lett. 63, 1168 (1989).Google Scholar
22 Fujitani, H. and Asano, S., Phys. Rev. B 42, 1696 (1990).Google Scholar
23 van Schilfgaarde, M. and Newman, N., Phys. Rev. Lett. 65, 2728 (1990).Google Scholar
24 Charlesworth, J. P. A., Godby, R. W., Needs, R. J., and Sham, L. J., Mater. Sci. Eng. B 14, 262 (1992).CrossRefGoogle Scholar
25 Dandrea, R. G. and Duke, C. B., J. Vac. Sci. Technol. B 11, 1553 (1993).CrossRefGoogle Scholar
26 Tung, R. T., Phys. Rev. B 45, 13509 (1992).Google Scholar
27 Sullivan, J. P., Tung, R. T., Pinto, M., and Graham, W. R., J. Appl. Phys. 70, 7403 (1991).CrossRefGoogle Scholar
28 Yu, A. Y. C. and Snow, E. H., J. Appl. Phys. 39, 3008 (1968).Google Scholar
29 Andrews, J. M. and Lepselter, M. P., Solid-St. Electron. 13, 1011 (1970).Google Scholar
30 Padovani, F. A. and Sumner, G. G., J. Appl. Phys. 36, 3744 (1965).CrossRefGoogle Scholar
31 Thanailakis, A. and Rasul, A., J. Phys. C 9, 337 (1976).CrossRefGoogle Scholar
32 Freeouf, J. L., Jackson, T. N., Laux, S. E., and Woodall, J. M., Appl. Phys. Lett. 40, 634 (1982).CrossRefGoogle Scholar
33 Freeouf, J. L., Solid State Commun. 33, 1059 (1980).Google Scholar
34 Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22, 1433 (1970).Google Scholar
35 Schmid, P. E., Helvetica Physica Acta 58, 371 (1985).Google Scholar
36 Mönch, W., Phys. Rev. Lett. 58, 1260 (1987).Google Scholar
37 Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett. 35, 56 (1975).Google Scholar
38 Ottaviani, G., Tu, K. N., and Mayer, J. W., Phys. Rev. lett. 44, 284 (1980).Google Scholar
39 Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
40 Mead, C. A. and Spitzer, W. G., Phys. Rev. 134, A713 (1964).Google Scholar
41 Parker, G. H., McGill, T. C., Mead, C. A., and Hoffman, D., Solid-St. Electron. 11, 201 (1968).Google Scholar
42 Zur, A., McGill, T. C., and Smith, D. L., Phys. Rev. B 28, 2060 (1983).Google Scholar