Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:25:27.266Z Has data issue: false hasContentIssue false

The Relationship between Growth Speed and Ambient Humidity in Convective Self-assembly

Published online by Cambridge University Press:  01 February 2011

Hans D. Robinson
Affiliation:
[email protected], Virginia Tech, Physics, Blacksburg, Virginia, United States
Kai Chen
Affiliation:
[email protected], Virginia Tech, Physics, Blacksburg, Virginia, United States
Stefan V. Stoianov
Affiliation:
[email protected], Virginia Tech, Physics, Blacksburg, Virginia, United States
Get access

Abstract

We present a variation of a standard convective self-assembly technique, where the drying meniscus is restricted by a straight-edge located approximately 100 μm above the substrate adjacent to the drying zone. We find this technique to yield films at roughly twice the growth rate compared to the standard technique. We attribute this to differing local evaporation rates in the two cases. We also investigate how the crystal growth rate depends on ambient relative humidity and find a clear linear dependency, which we attribute to the length of the drying zone being constant over a wide range of humidities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Shipway, A. N. Katz, E. and Willner, I. ChemPhysChem 1, 1852 (2000).10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L3.0.CO;2-L>Google Scholar
2 Velev, O. D. in Handbook of Surfaces and Interfaces of Materials (Academic Press, 2001), pp. 143.Google Scholar
3 Wang, D. Y. and Mohwald, H. J. Mater. Chem. 14, 459468 (2004).10.1039/B311283GGoogle Scholar
4 Mayoral, R. Requena, J. Moya, J. S. Lopez, C. Cintas, A. Miguez, H. Meseguer, F. Vazquez, L., Holgado, M. and Blanco, A. Adv. Mater. 9, 257 (1997).Google Scholar
5 G, J. E.. Wijnhoven, J. and Vos, W. L. Science 281, 802804 (1998).Google Scholar
6 Muller, M. Zentel, R. Maka, T. Romanov, S. G. and Torres, C. M. S. Adv. Mater. 12, 14991503 (2000).Google Scholar
7 Jiang, P. Bertone, J. F. Hwang, K. S. and Colvin, V. L. Chem. Mat. 11, 21322140 (1999).Google Scholar
8 Hulteen, J. C. and Vanduyne, R. P. J. Vac. Sci Techn. A 13, 15531558 (1995).Google Scholar
9 Park, S. H. Qin, D. and Xia, Y. Adv. Mater. 10, 1028 (1998).10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2-P3.0.CO;2-P>Google Scholar
10 Denkov, N. D. Velev, O. D. Kralchevsky, P. A. Ivanov, I. B. Yoshimura, H. and Nagayama, K., Langmuir 8, 31833190 (1992).10.1021/la00048a054Google Scholar
11 Dimitrov, A. S. and Nagayama, K. Chem. Phys. Lett. 243, 462468 (1995).10.1016/0009-2614(95)00837-TGoogle Scholar
12 Prevo, B. G. and Velev, O. D. Langmuir 20, 20992107 (2004).10.1021/la035295jGoogle Scholar
13 Kern, W. and Poutinen, D. A. RCA Rev. 31, 187206 (1970).Google Scholar
14 Prevo, B. G. Kuncicky, D. M. and Velev, O. D. Colloids Surf. A 311, 210 (2007).Google Scholar
15 Chen, K. Stoianov, S. V. Bangerter, J. and Robinson, H. D. J. Colloid Interface Sci. 344, 315320 (2010).10.1016/j.jcis.2010.01.010Google Scholar
16 Zdziennicka, A. J. Colloid Interface Sci. 336, 423430 (2009).10.1016/j.jcis.2009.04.063Google Scholar
17 Derjaguin, B. V. and Churaev, N. V. Langmuir 3, 607612 (1987).10.1021/la00077a002Google Scholar
18 Dimitrov, A. S. and Nagayama, K. Langmuir 12, 13031311 (1996).10.1021/la9502251Google Scholar
19 Haynes, C. L. and Van, R. P. Duyne, J. Phys. Chem. B 105, 55995611 (2001).10.1021/jp010657mGoogle Scholar