Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:32:36.306Z Has data issue: false hasContentIssue false

Relationship between grain size and the degrees of orientation in a twinned ErBa2Cu3Oy superconductor oriented in modulated rotating magnetic fields

Published online by Cambridge University Press:  25 July 2013

Shigeru Horii
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Shota Okuhira
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Momoko Yamaki
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Masakazu Haruta
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Jun-ichi Shimoyama
Affiliation:
Depatment of Applied Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
Get access

Abstract

We report the dependences of the degrees of tri- or bi-axial orientation on strength of applied magnetic fields of modulated rotating field (MRF) for twinned ErBa2Cu3Oy (Er123) powder samples oriented in epoxy resin under various MRF conditions. Introduction of a pulverization process in the Er123 powders improved the degrees of inplane orientations, and is effective for enhancing the inplane magnetic anisotropy of Er123 grains with twin microstructure. Formation of inhomogeneous domain structure is a dominant factor of the enhancement, and the present study indicates possibility of tri- or bi-axial orientation of the twinned Er123 grains even under relatively low MRF conditions around 1 T.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kimura, T., Kimura, F., and Yoshino, M., Langmuir 22, 3464 (2006).CrossRefGoogle Scholar
Watanabe, K., Awaji, S., Fukase, T., Yamada, Y., Sakuraba, J., Hata, F., Chong, C. K., Hasebe, T., and Ishihara, M.: Cryogenics 34 (1994) 639.CrossRefGoogle Scholar
Suzuki, T.S., Sakka, Y., and Kitazawa, K., Adv. Eng. Mater. 3 (2001) 490.3.0.CO;2-O>CrossRefGoogle Scholar
Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J., and Kishio, K., Jpn. J. Appl. Phys. 42, 7018 (2003).CrossRefGoogle Scholar
Fukushima, T., Horii, S., Ogino, H., Uchikoshi, T., Suzuki, T.S., Sakka, Y., Shimoyama, J., and Kishio, K., Appl. Phys. Express 1, 111701 (2008).CrossRefGoogle Scholar
Horii, S., Ishihara, A., Fukushima, T., Uchikoshi, T., Ogino, H., Suzuki, T.S., Sakka, Y., Shimoyama, J., and Kishio, K., Sci. Technol. Adv. Mater. 10 (2009) 014604.CrossRefGoogle Scholar
Hirschfeld, P. J., Wölfle, P., Sauls, J. A., Einzel, D., and Putikka, W. O., Phys. Rev. B 40 (1989) 6695.CrossRefGoogle Scholar
Laibowitz, R. B., Koch, R. H., Chaudhari, P., and Gambino, R. J., Phys. Rev. B 35 (1987) 8821.CrossRefGoogle Scholar
Sawano, K., Morita, M., Tanaka, M., Sasaki, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30 (1991) L1157.CrossRefGoogle Scholar
Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G., and Liu, J. Z., Appl. Phys. Lett. 57 (1990) 84.CrossRefGoogle Scholar
Horii, S., Tanoue, T., Yamaki, M., Maeda, T., and Shimoyama, J., Supercond. Sci. Technol. 24 (2011) 055001.CrossRefGoogle Scholar
Kimura, T., Polymer J. 35 (2003) 823.CrossRefGoogle Scholar
Horii, S. (unpublished)Google Scholar
Horii, S., Ogino, H., Yamaki, M., Haruta, M., Maeda, T., and Shimoyama, J., IEEE Trans. Appl. Supercond. 21 (2011) 2741.CrossRefGoogle Scholar