Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:16:29.588Z Has data issue: false hasContentIssue false

Relationship between critical current properties and nanorod morphology in REBa2Cu3Oy thin films

Published online by Cambridge University Press:  11 December 2012

M. Haruta
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
N. Fujita
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Y. Ogura
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
T. Nakata
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
T. Maeda
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
A. Ichinose
Affiliation:
Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan
P. Mele
Affiliation:
Institute for Sustainable Science and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
K. Matsumoto
Affiliation:
Department of Materials Science and Engineering, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804-8550, Japan
S. Horii
Affiliation:
School of Environmental Science and Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
Get access

Abstract

Changes in critical current properties depending on growth temperature (Ts) were clarified for Ba-Nb-O-doped YBa2Cu3Oy (Y123) films deposited by YAG- and excimer-PLD. Due to the introduction of Ba-Nb-O-nanorods, a vortex-Bose-glass-like behavior emerged as irreversibility lines and in-field critical current densities (Jcs) were improved. Crossover magnetic fields (Bcr) and in-field Jcs increased with the increase in Ts for the Y123 films with nanorods. These Ts-dependent critical current properties were attributable to the changes in morphology of the nanorods with Ts and were independent of laser source in PLD apparatuses. For the fabrication of RE123 coated conductors containing nanorods, optimization of Ts with taking both materials of RE123 matrix and nanorod into account is necessary to achieve higher in-field Jc.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Macmanus-Driscoll, J. L., Foltyn, S. R., Jia, Q. X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M. E., Maley, M. P., and Peterson, D. E., Nature Mater. 3 (2004) 439.CrossRefGoogle Scholar
Goyal, A., Kang, S., Leonard, K. J., Martin, P. M., Gapud, A. A., Varela, M., Paranthaman, M., Ijaduola, A. O., Specht, E. D., Thompson, J. R., Christen, D. K., Pennycook, S. J., and List, F. A., Supercond. Sci. Technol. 18 (2005) 1533.CrossRefGoogle Scholar
Mukaida, M., Horide, T., Kita, R., Horii, S., Ichinose, A., Yoshida, Y., Miura, O., Matsumoto, K., Yamada, K., and Mori, N., Jpn. J. Appl. Phys. 30 (2005) L952.CrossRefGoogle Scholar
Peurla, M., Paturi, P., Stepanov, Y. P., Huhtinen, H., Tse, Y. Y., Bódi, A. C., . Raittila, J, and Laiho, T., Superdond. Sci. Technol. 19 (2006) 768.Google Scholar
Maiorov, B., Baily, S. A., Zhou, H., Ugurlu, O., Kennison, J. A., Dowden, P. C., Holesinger, T. G., Foltyn, S. R., and Civale, L., Nature Mater. 8 (2009) 398.CrossRefGoogle Scholar
Ozaki, T., Yoshida, Y., Ichino, Y., Takai, Y., Ichinose, A., Matsumoto, K., Horii, S., Mukaida, M., and Takano, Y., J. Appl. Phys. 108 (2010) 093905.CrossRefGoogle Scholar
Horii, S., Yamada, K., Kai, H., Ichinose, A., Mukaida, M., Teranishi, T., Kita, R., Matsumoto, K., Yoshida, Y., Shimoyama, J., and Kishio, K., Supercond. Sci. Technol. 20 (2007) 1115.CrossRefGoogle Scholar
Horii, S., Kai, H., Mukaida, M., Yamada, K., Teranishi, T., Ichnose, A., Matsumoto, K., Yoshida, Y., Kita, R., Shimoyama, J., and Kishio, K., Appl. Phys. Lett. 93 (2008) 152506.CrossRefGoogle Scholar
Kai, H., Horii, S., Ichinose, A., Kita, R., Matsumoto, K., Yoshida, Y., Fujiyoshi, T., Teranishi, R., Mori, N., and Mukaida, M., Supercond. Sci. Technol. 23 (2010) 025017.CrossRefGoogle Scholar
Haruta, M., Sueyoshi, T., Fujiyoshi, T., Mukaida, M., Kai, H., Matsumoto, K., Mele, P., Maeda, T., and Horii, S., Physica C 471 (2011) 944.CrossRefGoogle Scholar
Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., and Kita, R., Supercond. Sci. Technol. 21 (2008) 032002.CrossRefGoogle Scholar
Namba, M., Awaji, S., Watanabe, K., Ito, S., Aoyagi, E., Kai, H., Mukaida, M., and Kita, R., Appl. Phys. Exp. 2 (2009) 073001.CrossRefGoogle Scholar
Haruta, M., Fujiyoshi, T., Sueyoshi, T., Dezaki, K., Ichigosaki, D., Miyahara, K., Miyagawa, R., Mukaida, M., Matsumoto, K., Yoshida, Y., Ichinose, A., and Horii, S., Supercond. Sci. Technol. 19 (2006) 813.CrossRefGoogle Scholar
Yamada, K., Mukaida, M., Kai, H., Teranishi, R., Ichinose, A., Kita, R., Kato, S., Horii, S., Yoshida, Y., Matsumoto, K., Toh, S., Appl. Phys. Lett. 92 (2008) 112503.CrossRefGoogle Scholar
Civale, L., Marwick, A. D., Worthington, T. K., Kirk, M. A., Thompson, J. R., Krusin-Erbaum, L., Sun, Y., Clem, J. R., and Holtzberg, F., Phys. Rev. Lett. 67 (1991) 648.CrossRefGoogle Scholar
Krusin-Elbaum, L., Civale, L., Blatter, G., Marwick, A. D., Holtzberg, F., and Field, C., Phys. Rev. Lett. 72 (1994) 1914.CrossRefGoogle Scholar
Mazilu, A., Safar, H., Maley, M. P., Coulter, J. Y., Bulaevskii, L. N., and Foltyn, S., Phys. Lev. B 58 (1998) R8909.Google Scholar