Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:23:50.993Z Has data issue: false hasContentIssue false

Relation Between the Chemical Short-Range Order in Liquid and Amorphous Alloys

Published online by Cambridge University Press:  15 February 2011

C.N.J. Wagneri
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90024, USA
H. Ruppersberg
Affiliation:
Fachbereich Angewandte Physik, Universität des Saarlandes, 6600 Saarbrücken, West-Germany.
Get access

Abstract

Recent advances in both diffraction theory and experiment have led to the determination of the topological and chemical short-range order in liquid alloys and metallic glasses. In binary alloys, three partial interference functions (or partial structure factors) must be determined to evaluate the Warren chemical short-range order parameter α. Examples of recent attempts to determine α in binary liquid and glassy alloys are given. In most glasses, studied so far, evidence exists for the occurrence of unlike nearest neighbor ordering which must be present in the liquid state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1.Krivoglaz, M.A., Theory of X-Ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York 1969).Google Scholar
2.Warren, B.E., X-Ray Diffraction (Addison-Wesley Publ. Co., Reading, Massachusetts 1969).Google Scholar
3.Finney, J.L., Proc. Roy. Soc. (London), Ser. A 319, 479 (1970).Google Scholar
4.Bhatia, A.B. and Thornton, D.E., Phys. Rev. B 2, 3004 (1970).10.1103/PhysRevB.2.3004Google Scholar
5.Wagner, C.N.J., J. Non-Crystalline Solids 31, 1 (1978).10.1016/0022-3093(78)90097-2Google Scholar
6.Wagner, C.N.J. and Ruppersberg, H., Atomic Energy Review, Supplement No 1, 101 (1981).Google Scholar
7.Keating, D.T., J. Appl. Phys. 34, 923 (1963).Google Scholar
8.Ruppersberg, H. and Egger, H., J. Chem. Phys. 63, 4095 (1975).Google Scholar
9.Edwards, F.G., Enderby, J.E., Howe, R.A. and Page, D.I., J. Phys. C 8, 3483 (1975).Google Scholar
10.Enderby, J.E., North, D.M., and Egelstaff, P.A., Phil. Mag. 14, 961 (1966).Google Scholar
11.Wilchinsky, Z., J. Appl. Phys. 15, 808 (1944).Google Scholar
12.Ashcroft, N.W. and Lengreth, D.C., Phys. Rev. 156, 685 (1967)Google Scholar
Enderby, J.E. and North, D.M., J. Phys. Chem. Liquids 1, (1968).Google Scholar
13.Bletry, J., Z. Naturforschung 33a, 327 (1978).Google Scholar
14.Chieux, P. and Ruppersberg, H., J. Physique 41, C9145 (1980).Google Scholar
15.Steeb, S. and Hezel, R., Z. Physik 191, 398 (1966).Google Scholar
16.Reiter, H., Ruppersberg, H. and Speicher, W., Inst. Phys. Conf. Ser. No. 30, 133 (1977).Google Scholar
Ruppersberg, H., Liquid and Amorphous Metals, eds. Lüscher, E. and Coufal, H. (Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980) p. 315.Google Scholar
17.Herbstein, F.H. and Averbach, B.L., Acta Met. 4, 407 and 414 (1956).10.1016/0001-6160(56)90031-1Google Scholar
18.Darken, L.S., Trans. Met. Soc. AIME 239, 80 (1967).Google Scholar
19.Boos, A. and Steeb, S., Physics Letters 63A, 333 (1977).Google Scholar
Boos, A. and Steeb, S., Z. Naturforschung 32a, 1229 (1977).Google Scholar
20.Lamarchand, J.L., Bletry, J. and Desre, P., J. Physique 41, C8163 (1980).Google Scholar
21.Sadoc, J.F. and Dixmier, J., Mat. Sci. Engr. 23, 187 (1976).Google Scholar
22.Ruppersberg, H., Lee, D., and Wagner, C.N.J., J. Phys. F 10, 1645 (1980).Google Scholar
Wagner, C.N.J. and Ruppersberg, H., Am. Inst. Phys. Conf. Proc. (in press).Google Scholar
23.Sakata, M., Cowlam, N., and Davies, H.A., J. Phys. F 9, L235 (1979).Google Scholar
Sakata, M., Cowlam, N., and Davies, H.A., J. Physique 41, C8190 (1980).Google Scholar
24.Mizoguchi, T., Kudo, T., Irisawa, T., Watanabe, N., Niimura, N., Misawa, M., and Suzuki, K., Rapidly Quenched Metals III, ed. Cantor, B. (The Metals Society, London, 1978) Vol. 2, p. 384.Google Scholar
25.Wagner, C.N.J. and Lee, Dokyol, J. Physique 41 C8242 (1980).Google Scholar
26.Williams, A. and Johnson, W.L., Proc. 4th Int. Conf. Rapidly Quenched Metals SendaiJapan1981 (in press).Google Scholar
27.Mizoguchi, T. (private communication), Livesey, A.K. and Gaskell, P.H. (private communication).Google Scholar