Published online by Cambridge University Press: 25 February 2011
It is shown that defects can be identified in liquids, that they are related to atomic diffusion, and a model is described whereby defects give rise to the observed relaxation behavior of viscous liquids. A review is presented of defects in silicate and fluoroberyllate liquids, as studied by computer simulation. It is found that defects have the form of overcoordinated or undercoordinated atoms, and that atomic diffusion occurs only at the site of defects. The manner in which an Ising model can represent the detect structure of viscous liquids to a first approximation is presented. The results of Monte Carlo simulations of a 2-dimensional kinetic Ising model are described. The behavior of this model is qualitatively the same as that of viscous liquids.