Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:25:24.886Z Has data issue: false hasContentIssue false

Relating Nanostructures to Mechanical Properties in Ion-Implanted Materials

Published online by Cambridge University Press:  17 March 2011

David M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
James A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Samuel M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Gary A. Petersen
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Get access

Abstract

Ion implantation was used to form high densities (~1019 /cm3) of small oxide precipitates in Ni in order to investigate the strength mechanism produced by such highly refined structures. Nanometer-size precipitates of Al2O3 and NiO are found to block dislocation motion in the Ni matrix, producing yield strengths up to 4.6 GPa, more than twice that of hardened bearing steel. Dispersion strengthening theory, developed for micrometer-size precipitates and spacings, was found to account quantitatively for the yield strengths produced by nanometer-size oxides as well. Nanoindentation plus finite-element modeling was used to quantify the mechanical properties of implanted metal layers, and was extended to examination of amorphous Si layers formed by self-ion implantation. The amorphous phase was found to have a yield strength of 4.45 ± 0.20 GPa, Young's modulus of 144 ± 7 GPa, and hardness of 10.3 ± 0.4 GPa. The modulus and hardness are reduced by 10% and 15%, respectively, from those of crystalline Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Orowan, E., Symp. Internal Stresses in Metals and Alloys (Inst. of Metals, London, 1948) p.451.Google Scholar
2. Hall, E.O., Proc. Phys. Soc. London B 64, 747 (1951).Google Scholar
3. Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
4. Clemens, B.M., Kung, H. and Barnett, S.A., MRS Bulletin 24, 20 (1999).Google Scholar
5. Sniegowski, J.J. and Boer, M.P. de, Annu. Rev. Mater. Sci. 30, 299 (2000).Google Scholar
6. Guckel, H., Skrobis, K.J., Klein, J. and Christenson, T.R., J. Vac. Sci. Technol. A 12, 2559 (1994).Google Scholar
7. Knapp, J.A., S.M. Myers, Follstaedt, D.M. and Petersen, G.A., J. Appl. Phys. 86, 6547 (1999).Google Scholar
8. Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83, 1256 (1998).Google Scholar
9. Knapp, J.A., D.M. Follstaedt, Myers, S.M., Barbour, J.C. and Friedmann, T.A., J. Appl. Phys. 85, 1460 (1999).Google Scholar
10. Embury, J. D., Metall. Trans. A 16, 2191 (1985).Google Scholar
11. Hirsch, P. B. and Humphreys, F. J., Proc. Royal Soc. London, Ser. A 318, 45 (1970).Google Scholar
12. Bourcier, R. J., Myers, S. M. and Polonis, D. H., Nucl. Inst. Meth. B 44, 278 (1990).Google Scholar
13. Follstaedt, D. M., Myers, S. M., Bourcier, R. J. and Dugger, M. T., in “Proc. Intl. Conf. on Beam Processing of Advanced Materials” (1992), eds. Singh, J. and Copley, S. M. (TMS, Warrendale, PA, 1993) p. 507.Google Scholar
14. Powder Diffraction File, International Center for Diffraction Data, Newton Square, PA.Google Scholar
15.ABAQUS version 5.8, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.Google Scholar
16. Hirth, J.P. and Lothe, J., Theory of Dislocations (Krieger, Malabar, FL, 1992), pp. 426-428, 836.Google Scholar
17. Ohdomori, I., Kakumu, M., Sugahara, H., Mori, M., Saito, T., Yonehara, T. and Hajimoto, Y., J. Appl. Phys. 52, 6617 (1981).Google Scholar
18. Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S. and Saris, F.W., Appl. Phys. Lett. 67, 226 (1995).Google Scholar
19. Custer, J.S., Thompson, Michael O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C. and Spaepen, F., Appl. Phys. Lett. 64, 437 (1994).Google Scholar
20. Burnett, P.J. and Briggs, G.A.D., J. Mater. Sci. 21, 1828 (1986).Google Scholar
21. Bhadra, R., Pearson, J., Okamoto, P., Rehn, L. and Grimsditch, M., Phys. Rev. B 38, 12 656 (1988).Google Scholar
22. Szabadi, M., Hess, P., Kellock, A.J., Coufal, H. and Baglin, J.E.E., Phys. Rev. B 58, 8941 (1998).Google Scholar
23. Volkert, C.A., J. Appl. Phys. 74, 7107 (1993).Google Scholar
24. Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F. and Hockey, B.J., Phys. Rev. Lett. 60, 2156 (1988).Google Scholar
25. Pharr, G.M., Mat. Res. Soc. Symp. Proc. 239, 301 (1992).Google Scholar
26. Weppelmann, E.R., Field, J.S. and Swain, M.V., J. Mater. Res. 8, 830 (1993).Google Scholar
27. Mann, A.B., Heerden, D. van, Pethica, J.B. and Weihs, T.P., J. Mater. Res. 15, 1754 (2000).Google Scholar
28. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
29.TRIM-90, provided by Ziegler, J., private communication.Google Scholar
30. Knapp, J.A., Follstaedt, D.M., Petersen, G.A. and Myers, S.M., Mat. Res. Soc. Symp. Proc. 559 (Symp. Q, Fall 2000), to be published.Google Scholar
31. Pharr, G.M. and Nastasi, M., private communication.Google Scholar
32. Knapp, J.A., Follstaedt, D.M., Banks, J.C. and Myers, S.M.,. Mat. Res. Soc. Symp. Proc. 594, 69 (2000).Google Scholar
33. Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83, 1256 (1998).Google Scholar
34. Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Follstaedt, D.M., Medlin, D.L. and Mirkarimi, P.B., Appl. Phys. Lett. 71, 3820 (1997).Google Scholar
35. Barrett, C.R., Nix, W.D. and Tetelman, A.S, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973) pp. 225229.Google Scholar