Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:14:07.887Z Has data issue: false hasContentIssue false

Regeneration of Ammonia-Borane Complex for Hydrogen Storage

Published online by Cambridge University Press:  15 February 2011

Nahid Mohajeri
Affiliation:
Florida Solar Energy Center, University of Central Florida Cocoa, FL 32922, U.S.A.
Ali T-Raissi
Affiliation:
Florida Solar Energy Center, University of Central Florida Cocoa, FL 32922, U.S.A.
Get access

Abstract

At the Florida Solar Energy Center (FSEC), a research program is underway for developing a high-density hydrogen storage system based on amine-borane (AB) complexes. Due to their high hydrogen capacity, these hydrides have been employed, in the past, as disposable hydrogen sources for fuel cell applications. However, to meet the requirements for hydrogen storage onboard vehicles, it is essential that cost effective and energy efficient methods for the regeneration (i.e. hydrogenation) of the spent (dehydrogenated) AB complexes can be found that utilize only hydrogen and/or electricity (i.e. the only plausible hydrogen economy energy carriers).

We are studying two ammoniaborane (NH3BH3)-based systems with high hydrogen storage capacity. The first system employs a borazine-cyclotriborazane cycle. Borazine is a product of NH3BH3 thermolysis. Cyclotriborazane is the inorganic analog of cyclohexane. The second system employs polymeric AB complexes such as poly-(aminoborane) and polyborazylene. Poly-(aminoborane), an inorganic analog of polyethylene, is also a product of amoniaborane thermolysis whilepolyborazylene is the product of borazine thermolysis.

For the two systems above, we are developing regeneration (i.e. reduction of borazine, poly-(aminoborane) and polyborazylene) schemes based on: 1) catalytic hydrogenation and 2) indirect (multi-step) synthesis techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1(a) Ayers, O. E., and Patrick, R. E., U.S. Pat. 3,948,699 (1976). (b) W. M. Chew, O. E. Ayers, J. A. Murfree, and P. Martignoni, U.S. Pat. 4,064,225 (1977). (c) W. M. Chew, O. E. Ayers, J. A. Murfree, and P. Martignoni, U.S. Pat. 4,061,512 (1977). (d) M.G. Hu, J. M. Van Paasschen, and R.A. Geanangel, J. Inorg. Nucl. Chem., 39, 2147 (1977). (e) G. D. Artz, and L. R. Grant, U.S. Pat. 4,468,263 (1984). (f) G. D. Artz, and L. R. Grant, U.S. Pat. 4,673,528 (1987). (g) X. Chen, A. Rusta-Sallehy, and D. Frank, US2003/0091877 A1 (2003). (h) P. B. Jones, D. J. Browning, G. O Mepsted, and D. P. Scattergood, WO 02/18267 A1 (2002). (i) A. Rusta-Sallehy, and D. Frank, US2003/0091879 A1 (2003).Google Scholar
2(a) Geanangel, R.A.. and Wendlandt, W. W., Thermochimica Acta, 86, 375 (1985). (b) V. Sit, R.A. Geanangel and W. W. Wendlandt, Thermochimica Acta, 113, 379 (1987). (c) A. Fabre, P. Goursat, and P. Lespade, Silicates Industriels, 9-10, 167 (1991). (d) A. Fabre, D. Tetard, P. Goursat, A. Lecompte, A. Dauger, and P. Lespade, Silicates Industriels, 3-4, 45 (1993). (e) G. Wolf, J. Baumann, F. Baitalow, and F. P. Hoffmann, Thermochimica Acta, 343, 19 (2000). (f) F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-RoBler, and G. Leitner., Thermochimica Acta, 391, 159 (2002).Google Scholar
3(a) Hough, W. V., Guibert, C. R., and Hefferan, G. T., U.S. Pat. 4,150,097 (1979). (b) T. Wideman, and L. G. Sneddon, Inorg. Chem., 34, 1002 (1995).Google Scholar
4(a) Jaska, C. A., Temple, K., Lough, A. J., and Manners, I., Chem. Commun., 962 (2001). (b) C. A. Jaska, K. Temple, A. J. Lough, and I. Manners, J. Am. Chem. Soc., 125, 9424 (2003). (c) G. H. Dahl, and R. Schaeffer, J. Inorg. Nuclear Chem. 12, 380 (1960). (d) L. G. Sneddon, and T. Wideman, U.S. Pat. 5,612,013 (1997).Google Scholar
5 Mamantov, G., and Margrave, J. L., J. Inorg. Nucl. Chem. 20, 348 (1961).Google Scholar
6(a) Böddeker, K. W., Shore, S. G., and Bunting, R. K., J. Am. Chem. Soc., 88, 4396 (1966). (b) D. R. Leavers, and W. J. Taylor, J. Phys. Chem., 81, 2257 (1977).Google Scholar
7(a) Dahl, G. H., and Schaeffer, R., J. Am. Chem. Soc., 83, 3032 (1961). (b) S. G. Shore and C. W. Hickam, Inorg. Chem., 2, 638 (1963).Google Scholar
8 Wiberg, E., and Bolz, A., Berichte der Deutschen Chemischen, 73B, 209 (1940).Google Scholar
9(a) Paffett, M. T., Simonson, R. J., and Paine, R. T., Surface Science, 232, 286 (1990). (b) CM. Chiang, S. M. Gates, and D. B. Beach, Surface Science, 261, 88 (1992).Google Scholar
10(a) Rye, R. R., Tallant, D. R., Borek, T. T., Lindquist, D. A., and Paine, R. T., Chem. Mater, 3, 286 (1991). (b) G. Mignani, C. Richard, and R.Trichon, EP 0-588-673-A1 (1993). (c) D. P. Kim, and J. Economy, Chem. Mater., 6, 395-400 (1994). (d) D. P. Kim, K. T. Moon, J. G. Kho, J. Economy, C. Gervais, and F. Babonneau, Polym. Adv. Technol. 10, 702-712 (1999). (e) M. Cote, P. D. Haynes, and C. Molteni, Phys. Rev. B., 63, 125207 (2001). (f) T. Wideman, P. J. Fazen, A. T. Lynch, K. Su, E. E. Remsen, and L. G. Sneddon, Inorg. Synth., 32, 232 (1998).Google Scholar