Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:35:07.006Z Has data issue: false hasContentIssue false

Refinement of Size Distributions for Primary Crystallizations

Published online by Cambridge University Press:  10 February 2011

E. Pineda
Affiliation:
E. U. d'Enginyeria Tècnica Agríola, Univ. Politècnica de Catalunya, Urgell 187, 08020 – Barcelona, SPAIN
T. Pradell
Affiliation:
E. U. d'Enginyeria Tècnica Agríola, Univ. Politècnica de Catalunya, Urgell 187, 08020 – Barcelona, SPAIN
D. Crespo
Affiliation:
Dept. de Física Aplicada, Univ. Politècnica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 – Barcelona, SPAIN
N. Clavaguera
Affiliation:
Grup de Física de l'Estat Sòlid, Departament d'ECM, Facultat de Física, Univ. de Barcelona, Diagonal 647, 08028 Barcelona, SPAIN
J. ZHU
Affiliation:
Institute of Energy Conversion, University of Delaware, Newark DE 19716
M. T. Clavaguera-Mora
Affiliation:
Grup de Física de Materials I. Department de Física, Facultat de Ciències, Univ. Autònoma de Barcelona, 08193 Bellaterra, SPAIN
Get access

Abstract

The microstructure developed in primary crystallizations is studied under realistic conditions. The primary crystallization of an amorphous alloy is modeled by considering the thermodynamics of a metastable phase transition and the kinetics of nucleation and crystal growth under isothermal annealing. A realistic growth rate, including an interface controlled growth at the beginning of the growth of each single grain and diffusion controlled growth process with soft impingement afterwards is considered. The reduction in the nucleation rate due to the compositional change in the remaining amorphous matrix is also taken into account. The microstructures developed during the transformation are obtained by using the Populational KJMA method, from the above thermodynamic and kinetic factors. Experimental data of transformed fraction, grain density, average grain size, grain size distribution and other related parameters obtained from annealed metallic glasses are modeled.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crespo, D., Pradell, T., Clavaguera-Mora, M. T., Clavaguera, N., Phys. Rev. B.55, p. 3435 (1997).Google Scholar
2. Pradell, T., Crespo, D., Clavaguera, N., Zhu, J., Clavaguera-Mora, M. T., Nanos. Mater. 8, p. 345 (1997).Google Scholar
3. Yavari, A. R., Drbohlav, O., Mater. Trans. JIM 36, p. 896 (1995).Google Scholar
4. Christian, J. W., The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford(1975) p. 482.Google Scholar
5. Avrami, M., J. Chem. Phys. 7, p. 1103 (1939); J. Chem. Phys. 8, p. 212 (1940); J. Chem. Phys. 9, p. 177 (1941); B. N. Kolmogorov, Izv. Akad. Nauk. Ser Mater. 3 p. 355 (1937).Google Scholar
6. Crespo, D., Pradell, T., Phys. Rev. B 54, p. 3101 (1996).Google Scholar
7. Clavaguera, N., Pradell, T., Zhu, J., Clavaguera-Mora, M. T., Nanos. Mater. 6, p. 453 (1995).Google Scholar
8. Clavaguera-Mora, M. T., Zhu, J., Pradell, T., Diego, J. A. Clavaguera, N., Mater. Sci. & Eng. A to appear.Google Scholar