Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T12:27:35.359Z Has data issue: false hasContentIssue false

Reduction of the Lattice Thermal Conductivity in Immiscible PbS-PbTe Systems

Published online by Cambridge University Press:  01 February 2011

Simon Johnsen
Affiliation:
[email protected], Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Steven N Girard
Affiliation:
[email protected], Northwestern University, Chemistry, 2145 Sheridan Rd., Evanston, Illinois, 60208-3113, United States
Ilyia Todorov
Affiliation:
[email protected], Argonne National Lab, Argonne, United States
Duck Young Chung
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States
Mercouri Kanatzidis
Affiliation:
[email protected], Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Get access

Abstract

The synthesis and properties characterization of several PbS1-xTexx = 0-0.16 samples are presented. Notably it is shown how a local minimum occurs in the thermal diffusivity for the PbS1-xTex samples at x ≈ 0.03. The thermoelectric properties of doped PbS1-xTex with x = 0.03 are reported and the properties are compared to the pure PbS and PbTe end members. The electronic contribution to the total thermal conductivity is analyzed for PbS1-xTexx = 0.03 and it is shown how the lattice thermal conductivity is significantly lowered compared to single crystalline PbS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D., Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320 (5876), 634638 (2008).Google Scholar
2 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303 (5659), 818821 (2004).Google Scholar
3 Androulakis, J. Lin, C. H. Kong, H. J. Uher, C. Wu, C. I. Hogan, T. Cook, B. A. Caillat, T., Paraskevopoulos, K. M. and Kanatzidis, M. G. Journal of the American Chemical Society 129 (31), 97809788 (2007).Google Scholar
4 Chung, D. Y. Hogan, T. Brazis, P. Rocci-Lane, M., Kannewurf, C. Bastea, M. Uher, C. and Kanatzidis, M. G. Science 287 (5455), 10241027 (2000).Google Scholar
5 Sootsman, J. R. Kong, H. Uher, C. D'Angelo, J. J., Wu, C. I. Hogan, T. P. Caillat, T. and Kanatzidis, M. G. Angewandte Chemie-International Edition 47 (45), 86188622 (2008).Google Scholar
6 Sootsman, J. R. Chung, D. Y. and Kanatzidis, M. G. Angewandte Chemie-International Edition 48 (46), 86168639 (2009).10.1002/anie.200900598Google Scholar
7 Lin, H. Bozin, E. S. Billinge, S. J. L. Androulakis, J. Malliakas, C. D. Lin, C. H. and Kanatzidis, M. G. Physical Review B 80 (4) (2009).Google Scholar
8 Poudeu, P. F. R. D'Angelo, J., Downey, A. D. Short, J. L. Hogan, T. P. and Kanatzidis, M. G., Angewandte Chemie-International Edition 45 (23), 38353839 (2006).Google Scholar
9 Blachnik, R. and Igel, R. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences B 29 (9-10), 625629 (1974).Google Scholar
10 Darrow, M. S. White, W. B. and Roy, R. Transactions of the Metallurgical Society of Aime 236 (5), 654-& (1966).Google Scholar
11 Leute, V. and Volkmer, N. Zeitschrift Fur Physikalische Chemie Neue Folge 144, 145155 (1985).Google Scholar
12 Johnsen, S. and Kanatzidis, M. G. In preparation.Google Scholar
13 May, A. F. Toberer, E. S. Saramat, A. and Snyder, G. J. Physical Review B 80 (12) (2009).Google Scholar
14 Harutyunyan, S. R. Vardanyan, V. H. Kuzanyan, A. S. Nikoghosyan, V. R. Kunii, S. Wood, K. S. and Gulian, A. M. Applied Physics Letters 83 (11), 21422144 (2003).Google Scholar
15 Wood, C. Reports on Progress in Physics 51 (4), 459539 (1988).Google Scholar