Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:48:22.670Z Has data issue: false hasContentIssue false

Reduction of the C54-TiSi2 Phase Formation Temperature Using Metallic Impurities

Published online by Cambridge University Press:  15 February 2011

R. W. Mann
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
L. A. Clevenger
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
G. L. Miles
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
J. M. E. Harper
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
C. Cabral
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
F. M. D'Heurle
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
T. A. Knotts
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
D. W. Rakowski
Affiliation:
IBM Microelectronics, Essex Junction, Vermont 05452
Get access

Abstract

The effects of small concentrations of metallic impurities have been studied in conjunction with the formation of titanium disilicide. We report that, by introducing small quantities of a refractory metal such as molybdenum or tungsten at or near the titanium/silicon interface, the temperature required to form the C54 phase TiSi2 can be reduced by as much as 100°C. Furthermore, the resulting C54-TiSi2 film exhibits small (∼ 0.2μm) grain size and improved thermal stability. This discovery has the potential to reduce the complexity and cost associated with forming low resistivity TiSi2 on submicron structures and to significantly improve the titanium silicide process window for future sub-half-micron VLSI applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Laves, F. and Wallbaum, H.J., Z. Kristallogr, 101 78 (1939).Google Scholar
2. Beyers, R. and Sinclair, R., J. Appl. Phys., 57, 5240 (1985).Google Scholar
3. Clevenger, L. A., Harper, J. M. E., Cabral, C. Jr, Nobili, C., Ottaviani, G. and Mann, R. W., J. Appl. Phys. 72 (10) 4978 (1992).Google Scholar
4. Allen, L.H., Ramanath, G., Lai, S.L., Ma, Z., Lee, S., Allman, D.D.J., and Fuchs, K.P., Appl.Phys.Lett. 64 (4) p. 417419 (1994).Google Scholar
5. Jeon, H. and Nemanich, R.J., Thin Solid Films, 184 357 (1990).Google Scholar
6. Thompson, R.D., Takai, H., Psaras, P.A., and Tu, K.N., J. Appl. Phys., 61, (2) 540 (1987).Google Scholar
7. Mann, R.W., Clevenger, L.A. and Hong, Q.Z.,J.Appl. Phys., 73, (7) 3566 (1993).Google Scholar
8. Clevenger, L. A., Mann, R.W., Roy, R.A., Saenger, K.L., Cabral, C. Jr, Piccirillo, J., J. Appl. Phys. 76 7874 (1994).Google Scholar
9. Lasky, J.B., Nakos, J.S., Cain, O.J., and Geiss, P.J., IEEE Trans. on Electron Devices, 38, (2) 262269 (1991).Google Scholar
10. Ohguro, T., Nakamura, S., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M. and Iwai, H., IEEE Trans. on Electron Devices, 41, no.12, 2305 (1994)Google Scholar
11. Mann, R.W., Racine, C.A., and Bass, R.S., Mat. Res. Soc. Symp. Proceedings, 224 115 (1991).Google Scholar
12. Clevenger, L.A., Mann, R.W., Miles, G.L., Harper, J.M.E., d'Heurle, F.M., Cabral, C. Jr, Saenger, K.L., Knotts, T.A. and Rakowski, D.W., Proc. VLSI Multilevel Interconnection Conference, p. 613 (1995).Google Scholar
13. Li, X.-H., Carlsson, R.A., Gong, S.F., and Hentzell, H.T.G., J. Appl. Phys., 72, 514, (1992).Google Scholar
14. Koch, T., Elec. Chem. Soc., Extended Abstract 147, Spring Meeting (1992).Google Scholar
15. Taur, Y., Sun, J.Y.-C., Moy, D., Wang, L.K., Davari, B., Klepner, S.P. and Ting, C.-Y., IEEE Trans. on Elec. Dev., 34, no.3, 575, (1987).Google Scholar