Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:04:00.123Z Has data issue: false hasContentIssue false

Reduction of Lateral Dimension on InGaAs/GaAs Multilayers on Non-(111) V-Grooved GaAs(100) Substrate by Chemical Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

Sung-Bock Kim
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon, 305-600, Korea
Jeong-Rae Ro
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon, 305-600, Korea
Seong-Ju Park
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, 506-303, Korea
El-Hang Lee
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon, 305-600, Korea
Get access

Abstract

We have found that the lateral dimension of InGaAs and GaAs multiple layers can be effectively controlled on non-( 111) V-grooved GaAs substrates by chemical beam epitaxy using triethylgallium and trimethylindium coupled with precracked arsine or unprecracked monoethylarsine. We suggest that this effect is due to the efficient migration of adatoms from (111) to non-(111) planes. This is an improved method which overcomes the difficulty that has been associated with the method of using only (111) V-grooves in which the lateral dimension is controlled by the differences in the growth rates between (111) and (100) planes. In case of InGaAs and GaAs epilayers, the anisotropy factors of growth rate were less than 0.1 at optimum growth temperature. Photoluminescence peak originated from InGaAs/GaAs quantum wire was significantly distinct from other peaks, suggesting an effective reduction of InGaAs lateral dimension.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, Y. and Yariv, A., IEEE J. Quantum Electron. QE-21 1666 (1985).Google Scholar
2. Imamura, K., Yokoyama, N., Ohnishi, T., Suzuki, S., Nakai, K., Nishi, H., and Shibatomi, A., Jpn. J. Appl. Phys. 23, L342 (1984).Google Scholar
3. Skocpol, W. J., Jackel, L. D., Hu, E. L., Howard, R. E. and Fetter, L. A., Phys. Rev. Lett. 49, 951 (1982).Google Scholar
4. Kash, K., Scherer, A., Worlock, J. M., Craighead, H. G., and Tamargo, M. C., Appl. Phys. Lett. 49, 1043 (1986).Google Scholar
5. Miller, B.I., Shahar, A., Koren, U., and Corvini, P. J., Appl. Phys. Lett. 54, 188 (1989).Google Scholar
6. Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 1275 (1986)Google Scholar
7. Zarem, H. A., Sercel, P.C., Hoenk, M. E., Lebens, J. A., and Vahala, K. J., Appl. Phys. Lett. 54, 269 (1989).Google Scholar
8. Ando, S. and Fukui, T., J. Cryst. Growth, 98, 646 (1989).Google Scholar
9. Arakawa, T., Nishioka, M., Nagamune, Y., and Arakawa, Y., Appl. Phys. Lett. 64, 2200 (1994).Google Scholar
10. Bhat, R., Kapon, E., Hwang, D. M., Koza, M. A., and Yun, C. P., J. Cryst. Growth 93, 850 (1988).Google Scholar
11. Isshiki, H., Aoyaki, Y., and Sugano, T., Appl. Phys. Lett. 63, 1528 (1993).Google Scholar
12. Arakawa, T., Tsukamoto, S., Nagamune, Y., Nishioka, M., Lee, J. H., and Arakawa, Y., Jpn. J. Appl. Phys. 32, L1377 (1993).Google Scholar
13. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., ETRI Journal 16, 1 (1994).Google Scholar
14. Kim, S. B., Park, S. J., Ro, J. R., and Lee, E. H., submitted to J. Cryst. Growth (1995).Google Scholar