Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:29:58.891Z Has data issue: false hasContentIssue false

Reduction of Excess Self-Interstitials in Silicon by Germanium and Silicon Implantation-Induced Damage

Published online by Cambridge University Press:  21 February 2011

Paul Fahey*
Affiliation:
IBM Research Division, Watson Research Center Box 218 Yorktown Heights, NY 10598
Get access

Abstract

We have investigated a phenomena first reported by Pfiester and Griffin, that the presence of implanted Ge in Si can substantially reduce excess self-interstitial concentrations [ J. R. Pfiester and P. B. Griffin, Appl. Phys. Lett., 52, 471 (1988) ]. By studying the effects of Ge implantation on P diffusion, we are able to deduce that residual implantation damage can act as an efficient sink for self-interstitials. This effect can also be produced by Si self-implantation, demonstrating that there is nothing unique about the chemical indentity of Ge in reducing self-interstitial concentrations. Our experiments provide solid evidence that there is no unexpectedly strong interaction of Ge with self-interstitials, a situation that would undermine the validity of previous Ge diffusion experiments aimed at studying Si self-diffusion. Our experimental results show that the effect of Ge implantation on P diffusion is a complicated function of implantation conditions. Diffusion is affected by the order of thl P and Ge implants as well as by changes in implant energies and doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pauling, L. in The Nature of the Chemical Bond,Third Edition (Cornell University, Ithaca, New York, 1960 ), p. 247.Google Scholar
[2] McVay, G. L. and DuCharme, A. R., J. Appl. Phys, 44, 1409 (1973).Google Scholar
[3] Fahey, P., Iyer, S. S., and Scilla, G. J., Appl. Phys. Lett., 54, 843 (1989).Google Scholar
[4] Pfiester, J. R. and Griffin, P. B., Appl. Phys. Lett.,52, 471 (1988).Google Scholar
[5] Pfiester, J. R., Law, M. E., and Dutton, R. W., IEEE Electron Dev. Lett., 9, 343 (1988).Google Scholar
[6] Holland, O.W., White, C. W., and Fathy, D., Appl. Phys. Lett., 51, 520 (1987).Google Scholar
[7] Fathy, D., Holland, O W., and White, C. W., Appl. Phys. Lett., 51, 1337 (1987).Google Scholar
[8] LeGoues, F. K., Rosenberg, R., and Meyerson, B. S., Appl. Phys. Lett., 54, 644 (1989).Google Scholar
[9] LeGoues, F. K., Rosenberg, R., and Meyerson, B. S., Appl. Phys. Lett., 54, 751 (1989).Google Scholar
[10] Fahey, P., Dutton, R. W., and Hu, S. M., Appl. Phys. Lett.,44, 777 (1984).Google Scholar
[11] Masetti, G., Nobili, D., and Solmi, S., in Semiconductor Silicon 1977, edited by Huff, H. R. and Sirtl, E. ( Electrochem. Soc., Princeton, 1977 ), p. 648.Google Scholar
[12] Nobili, D., Armigliato, A., Finetti, M., and Solmni, S., J. Appl. Phys, 51, 1484 (1982).Google Scholar
[13] Finetti, M., Masetti, G., Negrini, P., and Solmi, S., IEE Proc., 127, 37 (1980).Google Scholar
[14] Ozturk, M. C., Wortman, J. J., Osburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W. K., and Lee, C., IEEE Trans. Electron. Dev., 35, 660 (1988).Google Scholar
[15] Servidori, M., Solmi, S., Zaumseil, P., Winter, U., and Anderle, M., J. Appl. Phys. 65, 98 (1989).Google Scholar
[16] Servidori, M., Angelucci, R., Cembali, F., Negrini, P.. Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys., 61, 1834 (1987).Google Scholar
[17] Uedono, A., Tanigawa, S., Sugiura, J., and Ogasawara, M., Appl. Phys. Lett., 53, 25 (1988).Google Scholar
[18] Ajmera, A. C. and Rozgonyi, G. A., Appl. Phys. Left., 49, 1269 (1986).Google Scholar