Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:19:04.147Z Has data issue: false hasContentIssue false

Reduction of Defect Density in Heteroepitaxial GexSi1-x Grown on Patterned Si Substrates

Published online by Cambridge University Press:  28 February 2011

E.A. Fitzgerald
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y.-H. Xie
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Michel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P.E. Freeland
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B.E. Weir
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have investigated the molecular beam epitaxial growth of GexSi1-x on small growth areas patterned in Si substrates. Electron beam induced current, etch-pit density measurements, transmission electron microscopy, and photoluminescence were used to compare dislocation densities in GexSi1-x on patterned and unpattemed substrates. We find a dramatic reduction in both misfit and threading dislocation densities for the patterned substrate growth. Our results also show that dislocation introduction is dominated by heterogeneous nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Matthews, J.W. and Blakeslee, A.E., J. Crystal Growth 27, 118(1974).Google Scholar
2Kroemer, H., Liu, T.-Y., and Petroff, P.M., J. Crystal Growth 95, 96 (1989).Google Scholar
3Nishioka, T., Itoh, Y., Sugo, M., Yamamoto, A., and Yamaguchi, M., Jap. J. Appl. Phys. 27, L2271 (1988).Google Scholar
4Yamaguchi, M., Nishoka, T., and Sugo, M., Appl. Phys. Lett. 54, 24 (1989).Google Scholar
5Hamaguchi, N., Humphreys, T.P., Moore, D.J., Parker, C.A., Bedair, S.M., Tarn, J.C.L., Jiang, B.-L., El-Masry, N., Radzimski, Z.J., and Rozgonyi, G.A., J. Cryst. Growth 93, 449 (1988).Google Scholar
6Watanabe, Y., Kadota, Y., Okamoto, H., Seki, M., and Ohmachi, Y., J. Cryst. Growth 93, 459 (1988).Google Scholar
7Shimizu, M., Enatsu, M., Furukawa, M., Mizuki, T., and Sakurai, T., J. Cryst. Growth 93, 475 (1988).Google Scholar
8Hayafuji, N., Ochi, S., Miyashita, M., Tsugami, M., Murotani, T., and Kawagishi, A., J. Cryst. Growth 93, 494 (1988).Google Scholar
9Hull, R., Bean, J.C., Leibenguth, R.E., and Werder, D.J., J. Appl. Phys. 65, 4723 (1989).Google Scholar
10Hull, R. and Bean, J.C., Appl. Phys. Lett. 54, 925 (1989).Google Scholar
11Fitzgerald, E.A., Kirchner, P.D., Pettit, G.D., Woodall, J.M., and Ast, D.G., Appl. Phys. Lett. 52, 1496 (1988).Google Scholar
12Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G., Kirchner, P.D., Pettit, G.D., and Woodall, J.M., J. Appl. Phys. 65, 2220 (1989).Google Scholar
13Fitzgerald, E.A., J. Vac. Sci. Technol. B 7, 782 (1989).Google Scholar
14Tuppen, C.G., Gibbings, C.J., and Hockly, M., MRS Symposium Proceedings, Fall Meeting, Boston, MA 1988.Google Scholar