Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:43:22.497Z Has data issue: false hasContentIssue false

Recovery Process for Light-Soaked A-Si:H

Published online by Cambridge University Press:  16 February 2011

Qing Zhang
Affiliation:
Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Hideki Takashima
Affiliation:
Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Jiang-Huai Zhou
Affiliation:
Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Minoru Kumeda
Affiliation:
Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Tatsuo Shimizu
Affiliation:
Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Get access

Abstract

We have found that a broad distribution of the annealing activation energies is necessary to interpret the annealing behavior for the density of metastable defects created by 77K light soaking, while a narrow distribution is sufficient for describing the annealing behavior for the density of those created by RT light soaking. We have also found that the recovery of the degraded photoconductivity is easier than the annealing of the photocreated defects for both 77K and RT light soaking and that, at a given defect density, 77K light soaking degrades the photoconductivity more than RT light soaking. Our results suggest that the photocreated defects with a smaller annealing activation energy are more effective recombination centers than those with a larger annealing activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).CrossRefGoogle Scholar
2. Han, D. and Fritzsche, H., J. Non-Cryst. Solids 59/60, 397 (1983).Google Scholar
3. Kumeda, M., Yokomichi, H., Morimoto, A. and Shimizu, T., Jpn. J. Appl. Phys. 25, L654 (1986).Google Scholar
4. Kumeda, M., Ohta, T., and Shimizu, T., Solid St. Commun. 64, 291 (1987).CrossRefGoogle Scholar
5. Zhang, Q., Kumeda, M. and Shimizu, T., Jpn. J. Appl. Phys. 32, L371 (1993).CrossRefGoogle Scholar
6. Stradine, P. and Fritzsche, H., Mater. Res. Soc. Symp. Proc. 297, 571 (1993).Google Scholar
7. Stradine, P. and Fritzsche, H., Philos. Mag. B 69, 121 (1994)Google Scholar
8. Stradins, P., Tran, M.Q. and Fritzsche, H., J. Non-Cryst. Solids 164–166, 175 (1993).Google Scholar
9. Zhang, Q., Takashima, H., Kumeda, M. and Shimizu, T., Submited to Phys. Rev. B.Google Scholar
10. Shepard, K., Smith, Z. E., Aljishi, S. and Wagner, S., Appl. Phys. Lett. 53, 1644 (1988).CrossRefGoogle Scholar
11. Shimizu, T., Iwami, M., Okagawa, T., Morimoto, A. and Kumeda, M., Mater. Res. Soc. Symp. Proc. 258, 455 (1992).CrossRefGoogle Scholar
12. Morimoto, A., Matsumoto, M., Kumeda, M. and Shimizu, T., Jpn. J. Appl. Phys. 29, L1747 (1990).CrossRefGoogle Scholar
13. Shimizu, T., Kidoh, H., Matsumoto, M., Morimoto, A. and Kumeda, M., J. Non-Cryst. Solids 114, 693 (1989).Google Scholar
14. Hata, N. and Wagner, S., J. Appl. Phys. 72, 2857 (1992).Google Scholar