Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:37:22.184Z Has data issue: false hasContentIssue false

The recombination statistics of the visible photoluminescence of silicon nanocrystals

Published online by Cambridge University Press:  15 February 2011

J. Diener
Affiliation:
Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720–7300, USA
D. I. Kovalev
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany A.F. Ioffe Physicotechnical Institute, Russian Academy of the Sciences, St. Petersburg, 194021, Russia
S. D. Ganichev
Affiliation:
A.F. Ioffe Physicotechnical Institute, Russian Academy of the Sciences, St. Petersburg, 194021, Russia
G. Polisski
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
F. Koch
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
Get access

Abstract

A pulsed, high-power TEA CO2 laser with Unes in the region from 9.2 to 10.6 μm has been used to irradiate luminescent porous Si samples. The IR laser pulses heat the sample on a time scale much shorter than the PL decay time which is at 300 K for the PL at 1.65 eV in the order of tenth of μs. One IR pulse serves to increase the temperature of the luminescing particles in ∼2 μs up to 100°C. This increase of temperature leads to a efficient reduction of the photoluminescence (PL) intensity. However, the PL decay times are almost not affected by the heating pulse. Based on this measurement a picture of the recombination statistics that takes account of the granular Nature of the material is developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2]Vial, J.C., Bsiesy, A., Gaspard, F., Hermo, R., Ligeon, M., Muller, F., Romestain, R., and Macfarlane, R.M., Phys. Rev. B 45, 1417 (1992).Google Scholar
[3]Mihalcescu, I., Vial, J.C., and Romestain, R., J. Appl. Phys. 80, 2404 (1996).Google Scholar
[4]Andrianov, A.V., Kovalev, D.I., Shuman, V.B., Yaroshetskii, I.B., Semiconductors 27, 71 (1993).Google Scholar
[5]Finkbemer, S., Weber, J., Rosenbauer, M., and Stutzmann, M., J. Luminescence 57, 231 (1993).Google Scholar
[6]Kuznetsov, S.N., Piculev, V.B., Gardin, Yu.E., Klimov, I.V., and Gurtov, V.A., Phys. Rev. B 51, 1601 (1995).Google Scholar
[7]Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Luminescence 57, 257 (1993).Google Scholar
[8]Delenie, C., Lanoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R., Muller, F., and Bsiesy, A., Phys. Rev. Lett. 75, 2228 (1995).Google Scholar
[9]Maruyama, T. and Ontani, S., Appl. Phys. Lett. 65, 1346 (1994).Google Scholar
[10]Smith, R.L., Collins, S.D., J. Appl. Phys. 71, RI (1992).Google Scholar
[11]Kovalev, D., Polisski, G., Ben-Chorin, M., Diener, J. and Koch, F., J. Appl. Phys. 80, 5978 (1996).Google Scholar
[12]Fuchs, H.D., Stutzmann, M., Brandt, M.S., Rosenbauer, M. and Weber, J., Phys. Rev. B 48, 8172 (1993).Google Scholar
[13]Diener, J., Ganichev, S., Ben-Chorin, M., Kovalev, D., Petrova-Koch, V., and Koch, F. in Microcrystalline and nanocrystalline semiconductors, edited by Ed. Brus, L., Collins, R.W., Hirose, M. und Koch, F. (Mater. Res. Soc. Proc. 358, Boston 1994) pp. 501506.Google Scholar
[14]Ben-Chorin, M. und Kux, A., Appl. Phys. Lett. 64, 481 (1994).Google Scholar