Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:33:21.900Z Has data issue: false hasContentIssue false

Recombination Mechanism in Short-Wavelength GaN/AlGaN Quantum Wells

Published online by Cambridge University Press:  01 February 2011

D. Fuhrmann
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: [email protected]
T. Retzlaff
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: [email protected]
U. Rossow
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: [email protected]
A. Hangleiter
Affiliation:
Institut für Technische Physik, Technische Universität Braunschweig, Mendelssohnstr. 2, D-38106 Braunschweig, Germany E-mail: [email protected]
Get access

Abstract

To date, light emission by AlGaN-based heterostructures and LED's operating in the ultraviolet region is far less efficient than emission from longer wavelength structures based on GaInN. We have realized GaN/AlGaN quantum well structures emitting in the 360–320 nm range with peak room-temperature internal efficiencies reaching more than 20 %. From detailed studies of the temperature and excitation power dependence of the efficiency we find that excitons play a crucial role enhancing radiative recombination in such structures. Except for the peak internal efficiency, which reaches 73 % in GaInN/GaN, the overall behavior in GaN/AlGaN and GaInN/GaN is very similar, suggesting that the main difference is the nonradiative recombination mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishida, T., Ban, T., and Kobayashi, N., phys. stat. sol. (a) 203, 106 (2003).Google Scholar
2. Kudo, H., Ohuchi, Y., Jyouichi, T., Tsunekawa, T., Okagawa, H., Tadatomo, K., Sudo, Y., Kato, M., and Taguchi, T., phys. stat. sol. (a) 203, 95 (2003).Google Scholar
3. Hangleiter, A., Fuhrmann, D., Greve, M., Hitzel, F., Klewer, G., Lahmann, S., Netzel, C., Riedel, N., and Rossow, U., phys. stat. sol. (a) 201, 2808 (2004).Google Scholar
4. Ahrend, U., Rossow, U., Riedel, N., Greve, M., Hitzel, F., and Hangleiter, A., Phys. Stat. Sol. (c) 7, 2072 (2003).Google Scholar
5. Rossow, U., Hitzel, F., Riedel, N., Lahmann, S., Blaesing, J., Krost, A., Ade, G., Hinze, P., and Hangleiter, A., J. Cryst. Growth 248, 528 (2003).Google Scholar
6. Hangleiter, A., Im, J. S., Off, J., and Scholz, F., phys. stat. sol. (b) 216, 427 (1999).Google Scholar
7. Kalliakos, S., Zhang, X. B., Taliercio, T., Lefebvre, P., Gil, B., Grandjean, N., Damilano, B., and Massies, J., Appl. Phys. Lett. 428 (2002).Google Scholar