Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:55:42.514Z Has data issue: false hasContentIssue false

Recent Progress in Excimer Laser Lithography

Published online by Cambridge University Press:  26 February 2011

I. Higashikawa
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
M. Nonaka
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
T. Sato
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
M. Nakase
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
S. Ito
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
K. Horioka
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
Y. Horiike
Affiliation:
Toshiba Corp. VLSI Reseach Center, 1 Komukai Toshiba-cho Kawasaki, 210 Japan
Get access

Abstract

A KrF excimer laser exposure method has been developed for laboratory use, which employs 10 to 1 achromatic projection lens of 0.37 NA and 5x5 mm field size , and a TTL alignment system using the double diffraction method, which was realized by the use,of the achromatic lens. Novolak type mid-UV resists, such as AZ-5214 and PR-1024, were best suited for use in 248 nm exposure, considering the sensitivity and etching resistance from a practical viewpoint, and an additional post exposure baking process also improved the resist profile. The dependences of the exposure characteristics on the energy density per pulse and pulse frequency of these resists were not observed in the region of the practical exposure conditions. An alignment precision of x±30-= 0.2 μm was achieved for the alignment mark consisting of poly Si pattern. Thus, a 0.3 μm line and space pattern was realized by using tri-level resist process and a 0.2 μm gate pattern was successfully fabricated on the coplanar pattern with a 0.4 μm step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pol, V., Bennewitz, J.H., Escher, G.C., Feldman, M., Firtion, V.A., Jewell, T.E., Wilcomb, B.E. and Clemens, J.T.,Proc. of SPIE vol. 633, Mar.6(1986).Google Scholar
2 Walsh, K.F., Dunn, M.M., Holbrook, D.S. and Bruning, J.H.. SPIE 774, Lasers in Microlithography 155 (1987).Google Scholar
3 Ogawa, K., Sasago, M., Endo, M., Nakayama, H. and Ishihara, T.. Electrochem.Soc. Fall Meeting(Honolulu) Extended Abst. No.423(1987).Google Scholar
3 Sasago, M., Endo, M., Ogura, K., Ishihara, T.,IEDM Tech. Digest, Dec.316 (1986).Google Scholar
4 Nakase, M., Sato, T., Nonaka, M., Higashikawa, I. and Horiike, Y., SPIE. 773,226(1987).Google Scholar
5 Kameyama, M. and Ushida., K. SPIE 774, Layers in Microlithography 147 (1987).Google Scholar
6 Kano, I., Torikoshi, M. and Muraki, M. NIKKEI MICRODEVICES 2 113(1987). (in Japanese)Google Scholar
7 Tokui, A., Miyazaki, J., Kishimura, S. and Uoya, S.,48th Japan Appl. Phys. Fall Meeting(Nagoya), Abstr.No. 18p-F-3 429(1987).(in Japanese)Google Scholar
8 Takeda, M. and Tsumori, T. 48th Japan Appl. Phys. Fall Meeting(Nagoya), Abstr. No. 18p-F-10 431(1987).(in Japanese)Google Scholar
9 Bouehuis, G., Wittekoek, S. IEEE Trans. E.D.26 No.4 725(1979).Google Scholar
10 Tabata, M. and Tojo, T. Symposium on VLSI Technology(1987).Google Scholar
11 Moran, J.M. and Maydan, D. J.of Vac. Sci. and Tech. 16 (6) 1620(1979).Google Scholar
12 Meyerhofer, D.. IEEE Trans. E.D. ED-27, (5) 921(1980).Google Scholar
13 Batchelder, T. and Piatt, J. Solid State Tech. /Aug. 211(1983).Google Scholar
14 Jain, K., Willson, C.G. and Lin, B.J. IEEE Elect. Dev. Lets.EDL-3 53(1982).Google Scholar
15 Kameyama, Y., Toyoda, K. and Namba, S. J. Appl. Phys. 53 6489(1982).Google Scholar