Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:41:35.416Z Has data issue: false hasContentIssue false

Recent Developments in Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

J. E. Cunningham*
Affiliation:
AT&T Bell Laboratories Holmdel, NJ 07733
Get access

Abstract

We review Gas Source Molecular Beam Epitaxy of the GaAs/AlGaAs system. Among the growing number of condensed matter discoveries in materials grown by this approach we describe within resonant tunneling structures. This example serves to demonstrate the high quality quantum well formation and suppressed rate of dopant segregation that occurs during the GSMBE approach. We find a physical basis to quantify the latter growth effects when dopant segregation is viewed in two new ways. First, the broken translational symmetry created by the surface leads to dopant motion (as segregation) that otherwise is not allowed in the crystal interior (as diffusion). Secondly, dopants can dimerize on the crystal surface and this ultimately dictates how the rates of incorporation and segregation proceeds. The manner in which growth creates or destroyes covalent bonds of dopants on semiconductor surfaces thus presents new opportunities to improve dopant control.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parrish, M. B., J. Crystal Growth, 81, 249 (1987).Google Scholar
2. Cunningham, J. E., J. Vac. Sci. and Technol. B 6, 599 (1989).Google Scholar
3. Quigley, J. H., Hafich, M. J., Lee, H. Y., Stave, R. E. and Robinson, G. Y., J. Vac. Sci. And Technol. B. 358 (1989).Google Scholar
4. Cunningham, J. E., Goossen, K. W., Williams, M. and Jan, W., Appl. Phys. Lett. 60, 727 (1992).Google Scholar
5. Hou, H. Q. and Tu, C. W., J. Crystal Growth, 120, 167 (1992).Google Scholar
6. Panish, M. B., J. Electrochem. Soc. 127, 2729 (1980).,Google Scholar
Calawa, A. R., Litton, C. W., Kapitan, L. W., Lu, P. W., Look, D. C., Proc.qf SPIE, vol. 796, 32 (1987).Google Scholar
Heut, D., Lambert, M., Bonnerie, D. and Dufresne, D., J. Vac. Sci. Technol. B3, 823 (1985).Google Scholar
7. Calawa, A. R., Appl. Phys. Letts. 38, 701 (1981)Google Scholar
8. Pauling, L. in The Nature of the Chemical Bond,3ed. (Cornell University Press, Ithaca, 1960)Google Scholar
9. Cunningham, J. E., Timp, G., Chiu, T. H., Ditzenberger, J. A., Tsang, W. T., Sergent, A. M. and Lang, D. V., J. Crystal Growth, 95, 185 (1989).Google Scholar
10. Cunningham, J. E., Timp, G., Chiu, T. H., Tsang, W. T. and Ageykum, E., Appl. Phys. Letts. 53, 1285 (1988).Google Scholar
11. Cunningham, J. E., Williams, M., Chiu, T. H., Jan, W., Stroz, F. and Westerwick, E., J. Crystal Growth, 120, 306, (1992).Google Scholar
12. Tsui, D. unpublished.Google Scholar
13. Cunningham, J. E., Timp, G., Chang, A. M., Chiu, T. H., Jan, W., Schubert, E. F., Tsang, W. T., J. Crystal Growth, 95 253 (1989).Google Scholar
14. Goldman, V. J., Santos, M., Shayegan, M., Cunningham, J. E., Phys. Rev. Lett. 85, 2189 (1989).Google Scholar
15. Timp, G., Behinger, R. E., Cunningham, J. E., Phys. Rev. B 42, 9259 (1990).Google Scholar
16. Timp, G., Behinger, R., Chang, A. M., Chang, T. Y., Cunningham, J. E., Phys. Rev. Letts. 58, 2814 (1987).Google Scholar
17. Chang, A. M., Cunningham, J. E., Sol. St. Comm. 79, 681 (1989).Google Scholar
18. Tsu, S., and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).Google Scholar
Ricco, B. and Ya Azbel, M., Phys. Rev. B 29, 1970 (1984).Google Scholar
19. Luryi, S., Appl. Phys. Lett. 47, 490 (1985).Google Scholar
20. Goldman, V. J., Bu, Bo and Cunningham, J. E., in “Nanostructures and Mesoscopic Systems” ed. Kirk, W. P. and Reed, M. A. (Academic, New York, 1991).Google Scholar
Su, B., Goldman, V. J., Su, B. and Cunningham, J. E., Science 255, 313 (1992).Google Scholar
Su, Bo, Goldman, V. J., and Cunningham, J. E., Phys. Rev B. 46, (1992).Google Scholar
22. Goldman, V. J., Tsui, D.C., and Cunningham, J. E., J. Appl. Phys., 61, 2693 (1987).Google Scholar
23. Goldman, V. J., Tsui, D. C., and Cunningham, J. E., Phys. Rev B. 35, 9387 (1987).Google Scholar
24. Goldman, V. J., Tsui, D. C., and Cunningham, J. E., Phys. Rev. Lett. 58, 1256 (1987).Google Scholar
25. Dellow, M. W., Beton, P. H., Langerak, C. J. G. M., Foster, T. J., Martin, P. C., Eaves, L., Henini, M., Beaumont, S. P. and Wilkinson, C. D. W., Phys. Rev. Lett. 68, 1754 (1992).Google Scholar
26. Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Pearton, S. J., Baldwin, K. W. and West, K. W., Phys. Rev. Lett. 68, 3088, (1992).Google Scholar
27. Tewort, M., Martin-Moreno, L., Nicholls, J. T., Pepper, M., Kelly, M. J., Law, V. J., Ritchie, D. A., Frost, J. E. F. and Jones, G.A.C., Phys. Rev. B. 45, 14407 (1992).Google Scholar
28. Schubert, E. F., J. Vacuum Sci. Technol. A 8, 2980 (1990).Google Scholar
29. Santos, M., Sajoto, T., Zrenner, A. and Shayegan, M., Appl. Phys. Lett., 53, 250 (1988).Google Scholar
30. Webb, C., Appl. Phys. Lett., 54, 2091 (1989).Google Scholar
31. Beall, R. B., Clegg, J. B. and Harris, J. J., Semicon. Sci. Technol., 3, 612 (1988).Google Scholar
32. Schubert, E. F., Kuo, J. M., Krop, R., Luftmann, H. S., Hopkins, L. C. and Sauer, N. J., J. Appl. Phys., 67, 1969 (1990).Google Scholar
33. Cunningham, J. E., Chiu, T. H., Ourmazd, A., Jan, W. and Kuo, T. Y., J. Crystal Growth, 105, (1990).Google Scholar
34. Cunningham, J. E., Williams, M., Chiu, T. H., Jan, W. and Storz, F., J. Vac. Sci. and Technol. B. 10, 866 (1992).Google Scholar
35. Wood, C. E. C. and Joyce, B. A., J. Appl. Phys. 49, 4854 (1978).Google Scholar
36. Casey, H. C. Jr, Pannish, M. B. and Wolfstim, K. B., J. Phys. Chem. Solids, 32, 571 (1971).Google Scholar
37. Pao, Y. C., Hierl, T. and Cooper, R., J. Appl. Phys., 60, 201 (1986).Google Scholar
38. Cunningham, J. E., Kuo, T. Y., Ourmazd, A., Goossen, K., Jan, W., Storz, F., Ren, F. and Fonstad, C. G., J. Crystal Growth, 111, 515 (1991).Google Scholar
39. Harris, J. J., Klegg, J. B., Beall, R. B., Castagne, J., Woodbridge, K. and Roberts, C., J. Crystal Growth, 111, 239 (1991).Google Scholar
40. Rocket, A., Drummond, T. J., Greene, J. E. and Morkoc, H., J. Appl. Phys. 53, 7085 (1982).Google Scholar
41. Nakagawa, K., Miyao, M. and Shiraki, Y., Thin Solid Films 183 (315), 1989.Google Scholar
42. Ota, Y., J. Electrochem. Soc. 126, 1761 (1989) andGoogle Scholar
Caber, J., Ishiwara, H. and Furukawa, S., Jpn. J. Appl. Phys. 21, L712, (1982).Google Scholar
43. Harris, J.J., Asheenford, D. E., Foxon, C. T., Dobson, P. J. and Joyce, B. A., Appl. Phys. A, 33, 87 (1984).Google Scholar
44. Enquistt, P., Wicks, G. W., Eastman, L. F. and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).Google Scholar
45. Schubert, E.F., Luftman, H. S., Krof, R. F., Headrick, R. L. and Kuo, J. M., Appl. Phys. Lett. 57, 1799 (1990).Google Scholar
46. Yu, S., Gosele, U. M. and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989),Google Scholar
Deppe, D. G. and Holonyak, N. Jr, . J. Appl. Phys. 64. R93 (1988) andGoogle Scholar
Cunningham, J. E., Chiu, T. H., Jan, W. and Kuo, T. Y., Appl.phys. Lett., 59 (1991).Google Scholar
47. Evidence from Scanning Tunneling Microscopy suggest that ample surface vacancies are present on GaAs surface at low temperature and hence require no thermal formation. Pashely, M. D., Haberen, K. W., Friday, W., Woodall, J. M. and Kirchner, P. D., Phys. Rev. Lett. 60, 2176 (1988).Google Scholar
48. van Vechten, J. A. in Handbook on Semiconductors v.3, Keller, S. P. ed. North Holland, 1980.Google Scholar
49. Rouviere, J. L., Kim, Y., Cunningham, J., Rentschler, J., Bourret, A. and Ourmazd, A., Phys. Rev. Lett. 68, 2798, (1992).Google Scholar
50. Levi, A. F. J., Mc Call, S. L. and Platzman, P. M., Appl. Phys. Letts. 54, 940 (1989).Google Scholar
51. Ourmazd, A., Cunningham, J., Jan, W., Rentschler, J. and Taylor, D. W., Appl. Phys. Letts. 56, 854 (1990).Google Scholar
52. Chiu, T. H., Cunningham, J. E., Robertson, A. and Malm, D. L., J. Crystal Growth, 105, 155 (1990).,Google Scholar
Tsang, W. T., Choa, F. S., Ha, N. T., J. Elect. Mat., 20, 541 (1991).,Google Scholar
Abemathy, C. R., Pearton, S. J., Ren, F. and Song, J., J. Crystal Growth, 113, 412 (1991).,Google Scholar
Malik, R. J., Nagle, J., Micovic, M., Harris, T., Ryan, R. W. and Hopkins, L. C., J. Vac. ScLTechnol. B., 10, 850, (1992).Google Scholar