Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T06:57:50.249Z Has data issue: false hasContentIssue false

Recent Development of the Magnetic Shape Memory Materials Research in Finland

Published online by Cambridge University Press:  31 January 2011

Outi Söderberg
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Ilkka Aaltio
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Yanling Ge
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Alexandr Soroka
Affiliation:
[email protected], AdaptaMat Ltd., Helsinki, Finland
Raisa Niemi
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Xuwen Liu
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Simo-Pekka Hannula
Affiliation:
[email protected], TKK Helsinki University of Technology, Department of Materials Science and Engineering, Espoo, Finland
Get access

Abstract

Ni-Mn-Ga based magnetic shape memory (MSM) materials have been studied since 1998 in Finland at the Helsinki University of Technology (TKK, previously HUT). The large HUT-MSM-project resulted in MSM-alloys with high service temperature, 10 % field-induced-strain, as well as circumstances when and how a Ni-Mn-Ga alloy exhibits this phenomenon. The understanding of the structure and behavior of twin boundaries, and their role, for example, in the vibration damping and long-term actuation has been enhanced in the recent projects. Twin boundaries have been studied by XRD, by high-resolution transmission electron microscopy (HRTEM), and by in-situ straining in TEM, the last one in co-operation with the Institute of Physics in Prague (ASCR-IP), Czech Republic. The results obtained by neutron diffraction in co-operation with Hahn-Meitner-Institut Berlin, Institute for Metal Physics (IMP), Kiev, and Institut Laue-Langevin (ILL), Grenoble, have given new crystallographic information. Damping of Ni-Mn-Ga polymer composites has been proved to be excellent at high stiffness levels with the loss factor = 0.6 at E ≈ 1 GPa. This research was carried out in co-operation with the University of California Los Angeles (UCLA), USA. In the long-term actuation, a fatigue life of 2×109 has been recorded for a five-layered modulated Ni-Mn-Ga structure in mechanical cycling. The evolution of the MSM parameters during the long-term use is recorded and used as an input data for the models developed in the European MAFESMA co-operation. The search for alloys with wide stable thermal property range showing MSM effect has continued and alloys that are stable down to 4 K have been established. Modeling based on Ginsburg-Landau theory has been applied to evaluate aging and thermal fluctuations in the modulated Ni-Mn-Ga structures. As a commercial target, AdaptaMat Ltd. develops technology to produce Ni-Mn-Ga magnetic shape memory material with improved quality, lower twinning stress, longer fatigue life as well as lower cost and better availability for use in research and development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ullakko, Kari, PCT patent application WO97/03472 (11-July-1995).Google Scholar
2 Ullakko, K., Huang, J.K., Kantner, C., O'Handley, R.C. and Kokorin, V.V., Appl. Phys. Lett. 69, 1966 (1996).Google Scholar
3 Chernenko, V.A., Cesari, E., Kokorin, V.V. and Vitenko, I.N., Scripta Metall. Mater. 33, 1239 (1995).Google Scholar
4 Söderberg, O., Ge, Y., Sozinov, A., Hannula, S-P. and Lindroos, V. K., Smart Mat. Struct. 14, S223 (2005); in Handbook of Magnetic Materials vol 16, edited by J. Buschow (Elsevier Science, Amsterdam, 2006), pp. 1-39.Google Scholar
5 Aaltio, I., Heczko, O., Söderberg, O. and Hannula, S-P., in Smart Materials, edited Schwartz, M., (CRC Press Taylor & Francis Group, Boca Raton FL USA, 2009). p. 20_1–20_7.Google Scholar
6 Heczko, O., Scheerbaum, N. and Gutfleisch, O., in Liu, J.P. et al. (eds.), Nanoscale Magnetic Materials and Applications, DOI 10.1007/978-0-387-85600-1 14, Springer Science+Business Media, LLC 2009.Google Scholar
7 Söderberg, O., Ge, Y., Aaltio, I., Heczko, O. and Hannula, S.-P., Mat. Sci. Eng. A 481-482, 80 (2008).Google Scholar
8 Söderberg, O., Aaltio, I., Ge, Y., Liu, X.W. and Hannula, S.-P., Adv. Sci. Techn. 59, 1 (2008).Google Scholar
9 Otsuka, K. and Wayman, C.M., Shape Memory Materials (Cambridge University Press, 1998) p. 284.Google Scholar
10 Likhachev, A.A., Sozinov, A., and Ullakko, K., J. Phys. IV Proc., 115, 95 (2004).Google Scholar
11 Heczko, O., Straka, L., and Ullakko, K., J. Phys. IV Proc., 112, 959 (2003).Google Scholar
12 Heczko, O., Straka, L., Aaltio, I. and Hannula, S.-P., Mat. Sci. Eng. A 481-482, 283 (2008).Google Scholar
13 Heczko, O., Straka, L. and Hannula, S.-P.. Mat. Sci. Eng. A 438, 1003 (2006).Google Scholar
14 Sedlák, P., Frost, M. (2009) MSM iRLOOP 1.1 programme, Institute of Thermomechanics, Czech Academy of Sciences, Czech Republic.Google Scholar
15 Pagounis, E. and Quandt, E., in ACTUATOR 2006, edited by Borgmann, H., (10th Int. Conf. New Actuators, Bremen, Germany, 2006) pp. 394400.Google Scholar
16 Heczko, O. and Straka, L., Temperature dependence and temperature limits of magnetic shape memory effect, J. Appl. Phys., 94, 7139 (2003)Google Scholar
17 Sozinov, A., Straka, L., Lanska, N. and Ullakko, K., presented at ICFSMA'09, Spain, 2009 (unpublished).Google Scholar
18 Söderberg, O., Koho, K., Sammi, T., Liu, X.W., Sozinov, A., Lanska, N. and Lindroos, V.K., Mat. Sci. Eng. A 378, 386 (2004).Google Scholar
19 Glavatska, N., Dobrinskiy, A., Glavatskyy, I., Urubkov, I., Söderberg, O. and Hannula, S.-P., Funct. Mat. 13, 331 (2006).Google Scholar
20 Glavatskyy, I., Glavatska, N., Söderberg, O., Hannula, S.-P. Hoffmann, J.-U., Scripta Mat. 54, 1891 (2006).Google Scholar
21 Koho, K., Söderberg, O., Lanska, N., Ge, Y., Liu, X., Straka, L., Vimpari, J. and Lindroos, V.K., Mat. Sci. Eng. A 378, 943 (2004).Google Scholar
22 Glavatskyy, I., Glavatska, N., Dobrinsky, A., Hoffmann, J.-U., Söderberg, O. and Hannula, S.-P., Scripta Mat. 56, 565 (2007).Google Scholar
23 Aaltio, I., Söderberg, O., Friman, M., Glavatskyy, I., Ge, Y., Glavatska, N. and Hannula, S.-P., in Proc. ESOMAT 2009, edited by Šittner, P., Paidar, V., Heller, L. and Seiner, H. (8th European Symposium on Martensitic Transformations, Prague, Czech Republic, 2009) EDP Sciences, 04001, DOI:10.1051/esomat/200904001.Google Scholar
24 Ge, Y., Aaltio, I., Söderberg, O. and Hannula, S.-P., Mat. Sci. Forum 635, 63 (2010).Google Scholar
25 Ge, Y., Heczko, O., Söderberg, O. and Hannula, S.-P., Mat. Sci. Eng. A 481-482, 302 (2008).Google Scholar
26 Ustinov, A., Olikhovska, L., Glavatska, N. and Glavatskyy, I., J. Appl. Crystall. 42, 211 (2009).Google Scholar
27 Olikhovska, L., Ustinov, A., Glavatska, N. and Glavatskyy, I., in Proc. ESOMAT 2009, edited by Šittner, P., Paidar, V., Heller, L. and Seiner, H. (8th European Symposium on Martensitic Transformations, Prague, Czech Republic, 2009) EDP Sciences, 02025, DOI:10.1051/esomat/200902025.Google Scholar
28 Ge, Y., Jiang, H., Sozinov, A., Söderberg, O., Lanska, N., Keränen, J., Kauppinen, E.I., Lindroos, V.K. and Hannula, S.-P., Mat. Sci. Eng. A 438-440, 961 (2006).Google Scholar
29 Heczko, O., Prokes, K. and Hannula, S.-P., J. Mag. Mag. Mat. 316, 386 (2007).Google Scholar
30 Straka, L., Novák, V., Landa, M. and Heczko, O., Mat. Sci, Eng. A 374, 263 (2004).Google Scholar
31 Seiner, H., Bicanová, L., Sedlák, P., Landa, M., Heller, L. and Aaltio, I., Mat. Sci. Eng. A 521-522, 205 (2009).Google Scholar
32 Straka, L., Heczko, O. and Hänninen, H., Acta Mat. 56, 5492 (2008).Google Scholar
33 Richard, M.L., Feuchtwanger, J., Peterson, B., Allen, S.M., O'Handley, R.C., Microsc. Microanal. 12, 970 (2006).Google Scholar
34 Heczko, O., Soroka, A. and Hannula, S.-P., Appl. Phys. Lett. 93, 022503 (2008).Google Scholar
35 Molnar, P., Sittner, P., Lukas, P., Hannula, S.-P. and Heczko, O., Smart mat. struct. 17, 035014 (2008).Google Scholar
36 Aaltio, I., Söderberg, O., Ge, Y. and Hannula, S-P., Scripta Mat. 62, 9 (2010).Google Scholar
37 Straka, L., Lanska, N., Ullakko, K. and Sozinov, A., presented at ICFSMA'09, Spain, 2009 (unpublished).Google Scholar
38 Ge, Y., Aaltio, I., O. Söderberg and Hannula, S-P., presented at ICOMAT2008 Santa Fe, NM, USA, 2008 (to be published).Google Scholar
39 Ge, Y., Zárubová, N., Dlabáček, Z., Aaltio, I., Söderberg, O. and Hannula, S-P., in Proc. ESOMAT 2009, edited by Šittner, P., Paidar, V., Heller, L. and Seiner, H. (8th European Symposium on Martensitic Transformations, Prague, Czech Republic, 2009) EDP Sciences, 04007, DOI:10.1051/esomat/200904007.Google Scholar
40 Glavatska, N., Mat. Sci. Eng. A 481-482, 73 (2008).Google Scholar
41 L'vov, V.A. and Glavatska, N., Mat. Sci. Eng. A 481-482, 279 (2008).Google Scholar
42 L'vov, V.A., Kosogor, A. O., Söderberg, O. and Hannula, S-P., Mat. Sci. Forum 635, 13 (2010).Google Scholar
43 Aaltio, I. and Ullakko, K., in Proc. ACTUATOR 2000, edited by Borgmann, H. (7th Int. Conf. New Actuators, Bremen, Germany, 2000) 527530.Google Scholar
44 Heczko, O., Straka, L., Söderberg, O. and Hannula, S-P., Proc. SPIE, 5761, 513 (2005).Google Scholar
45 Aaltio, I., Tellinen, J., Ullakko, K. and Hannula, S.-P., in Proc. ACTUATOR 2006, edited by Borgmann, H. (10th Int. Conf. New Actuators, Bremen, Germany, 2006) pp. 402405.Google Scholar
46 Aaltio, I., Ge, Y., Liu, X., Söderberg, O., Tellinen, J., Sozinov, A. and Hannula, S-P., presented at ICOMAT2008 Santa Fe, NM, USA, 2008 (to be published).Google Scholar
47 Ullakko, K., Straka, L., Sozinov, A., Lanska, N., Soroka, A., Aaltio, I. and Hannula, S-P., Kilpeläinen, S., Tuomisto, F., presented at ICFSMA'09, Spain, 2009 (unpublished).Google Scholar
48 Aaltio, I., Soroka, A., Ge, Y., Söderberg, O. and Hannula, S.-P. 2010 submitted to Smart Materials and Structures.Google Scholar
49 Liu, X.W., Söderberg, O., Koho, K., Lanska, N., Ge, Y., Sozinov, A. and Lindroos, V.K., Wear 258, 1364 (2005).Google Scholar
50 Aaltio, I., Mohanchandra, K.P., Heczko, O., Lahelin, M., Ge, Y., Carman, G.P., Söderberg, O., Löfgren, B., Seppälä, J., Hannula, S-P., Scripta Mat. 59, 550 (2008).Google Scholar
51 Aaltio, I., Lahelin, M., Söderberg, O., Heczko, O., Löfgren, B., Ge, Y., Seppälä, J. and Hannula, S-P., Mat. Sci. Eng. A 481-482, 314 (2008).Google Scholar
52 Lahelin, M., Aaltio, I., Heczko, O., Söderberg, O., Ge, Y., Löfgren, B., Hannula, S.-P. and Seppälä, J., Compos. Part A 40, 125 (2009).Google Scholar
53 Jokinen, T., Ullakko, K. and Suorsa, I., in Proc. ICEM 2001 (5th Int. Conf. Electr. Mach. Syst., Shenyang, China, 2001) pp. 2023.Google Scholar
54 Wilson, S.A., Jourdain, R.P.J., Zhang, Qi, Dorey, R.A., Bowen, C.R., Willander, M., Wahab, Q. Ul, Al-hilli, S.M., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B., Wijngaart, W. van der, Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C. and Persson, K., Mat. Sci. Eng. R 56, 1 (2007).Google Scholar
55 Techapiesancharoenkij, R., Kostamo, J., Simon, J., Bono, D., Allenand, S.M. O'Handley, R.C., Appl. Phys. Lett. 92, 032506 (2008).Google Scholar
56 Ahola, J., Liedes, T., Kroneld, P. and Nevala, K., J. Vibroeng. 11, 443 (2009).Google Scholar
57 Kajaste, J., Kostamo, J., Kauranne, H., Suorsa, I. and Pietola, M., in Proc. AED 2006 (5th Int. Conf. Adv. Eng. Des., Prague, Czech Republic, 2006). CD-ROM. 8 p.Google Scholar
58 Suorsa, I., and Pagounis, E., J. Appl. Phys. 95, 4958 (2004).Google Scholar
59 Suorsa, I., Tellinen, J., Ullakko, K., and Pagounis, E., J. Appl. Phys. 95, 8054 (2004).Google Scholar