Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:23:20.070Z Has data issue: false hasContentIssue false

Recent Advances in Ordered Intermetallics

Published online by Cambridge University Press:  01 January 1992

C. T. Liu*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
Get access

Abstract

This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koch, C. C., Liu, C. T., and Stoloff, N. S., ed. “High Temperature Ordered Intermetallic Alloys,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 39, Pittsburgh, PA, 1985).Google Scholar
2. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., ed. “High Temperature Ordered Intermetallic Alloys II,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).Google Scholar
3. Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C., ed. “High Temperature Ordered Intermetallic Alloys III,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).Google Scholar
4. Johnson, L. A., Pope, D. P., and Stiegler, J. O., ed. “High Temperature Ordered Intermetallic Alloys IV,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).Google Scholar
5. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O., ed. “High Temperature Aluminides and Intermetallics,” in Proceedings of TMS/ASM Symposium (TMS-AIME, Warrendale, PA, 1990).Google Scholar
6. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O., ed. “High-Temperature Aluminides Intermetallics,” Mater. Sci. Eng. A152/A153 (1992).Google Scholar
7. Izumi, O., ed. “Intermetallic Compounds - Structure and Mechanical Properties,” in Proceedings of JIMIS-6 (Japan Institute of Metals, Tokyo, 1991).Google Scholar
8. Liu, C. T., Cahn, R. W., and Sauthoff, G., ed. “Ordered Intermetallics - Physical Metallurgy and Mechanical Behavior,” NATO ASI Series, Vol.213 (Kluwer Academic Publishers, Boston, MA, 1992).Google Scholar
9. Kim, Y. W. and Boyer, R. R., ed. “Microstructure/Propeities Relationships in Titanium Aluminides and Alloys” (TMS-AIME, Warrendale, PA, 1991).Google Scholar
10. Yamaguchi, M. and Umakoshi, Y., “The Deformation Behavior of Intermetallic Superlattice Compounds,” Prog. Mater. Sci. 34(1), 1 (1990).Google Scholar
11. Liu, C. T., Stiegler, J. O., and Froes, F. H., “Ordered Intermetallics,” in Metals Handbook. 10th ed., Vol. 2 (ASM, Materials Park, OH, 1990), pp. 913–42.Google Scholar
12. Stoloff, N. S., Int. Met. Rev. 29(3), 123 (1984).Google Scholar
13. Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H., ed. “High Temperature Ordered Intermetallic Alloys V,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc, Pittsburgh, PA, 1993).Google Scholar
14. McKamey, C. G., DeVan, J. H., Tortorelli, P. F., and Sikka, V. K., J. Mater. Res. 6, 1779 (1991).Google Scholar
15. Liu, C. T., Lee, E. H., and McKamey, C. G., Scr. Metall. 23, 875 (1989).Google Scholar
16. Liu, C. T., McKamey, C. G., and Lee, E. H., Scr. Metall. 24, 385 (1990).Google Scholar
17. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).Google Scholar
18. Masahashi, N., Takasugi, T., and Izumi, O., Metall Trans. A 19A, 353 (1988).Google Scholar
19. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).Google Scholar
20. Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metall. 20, 1317 (1986).Google Scholar
21. Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 1823 (1988).Google Scholar
22. Takasugi, T. and Izumi, O., Scr. Metall. 19, 903 (1985).Google Scholar
23. Kuruvilla, A. K., Ashok, S., and Stoloff, N. S., in Proceedings of the Third International Congress on Hydrogen in Metals. Vol. 2, 1982), p. 629.Google Scholar
24. Kuruvilla, A. K. and Stoloff, N. S., Scr. Metall. 19, 83 (1985).Google Scholar
25. Camus, G. M., Stoloff, N. S., and Duquette, D. J., Acta Metall. 37, 1497 (1989).Google Scholar
26. Liu, C. T. and Takeyama, M., Scr. Metall. 24, 1583–86 (1990).Google Scholar
27. Liu, C. T., Fu, C. L., George, E. P., and Painter, G. S., ISIJ Int. (October 1991).Google Scholar
28. Liu, C. T. and George, E. P., Scr. Metall. 24, 1285 (1990).Google Scholar
29. Liu, C. T. and George, E. P., pp. 527–32 in ref. 4 (1991).Google Scholar
30. Gaydosh, D. J. and Nathal, M. V., Scr. Metall. 24, 1281 (1990).Google Scholar
31. Lynch, R. J., Heldt, L. A., and Milligan, W. W., Scr. Metall. 25, 2147 (1991).Google Scholar
32. Shea, M., Castagna, A., and Stoloff, N. S., p. 607 in ref. 4 (1991).Google Scholar
33. Castagna, A. and Stoloff, N. S., Scr. Metall. 26, 673 (1992).Google Scholar
34. Stoloff, N. S., unpublished results, Rensselaer Polytechnic Institute (1992).Google Scholar
35. Liu, C. T., p. 321 in ref. 6 (1992).Google Scholar
36. Liu, C. T., Sikka, V. K., and McKamey, C. G., “Alloy Development of FeAl Aluminide Alloys for Structural Use in Corrosive Environments,” ORNL Report, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, 1993 (unpublished).Google Scholar
37. Liu, C. T., Scr. Metall. 25, 1231 (1991).Google Scholar
38. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
39. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall. 19, 551 (1985).Google Scholar
40. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. 16A, 441 (1985).Google Scholar
41. Liu, C. T., Scr. Metall. 27, 25 (1992).Google Scholar
42. Liu, C. T. and Oliver, W. C., Scr. Metall. 25, 1933 (1991).Google Scholar
43. Takasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).Google Scholar
44. Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).Google Scholar
45. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scr. Metall. 20, 129 (1986).Google Scholar
46. Taub, A. I. and Briant, C. L., p. 343 in ref. 2 (1987).Google Scholar
47. Taub, A. I. and Briant, C. L., Acta Metall. 35, 1597 (1987).Google Scholar
48. Vitek, V. and Chen, S. P., Scr. Metall. 25, 1237 (1991).Google Scholar
49. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., and De Hosson, J. Th. M., “Grain Boundary Chemistry and Intergranular Fracture,” edited by Was, G. S. and Bruemmer, S. M., Mater. Sci. Forum 46, 237 (1989).Google Scholar
50. Yan, M., Vitek, V., and Ackland, G. J., p. 335–70 in ref. 8 (1992).Google Scholar
51. Kruisman, J. J., Vitek, V., and Hosson, J. Th. M. De, Acta Metall. 36, 2729 (1989).Google Scholar
52. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).Google Scholar
53. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. 19A, 353 (1988).Google Scholar
54. George, E. P., Liu, C. T. and Pope, D. P., Scr. Metall. 27, 365–70 (1992).Google Scholar
55. Takasugi, T., Suenaga, H., and Izumi, O., J. Mater. Sci. 26, 1179 (1991).Google Scholar
56. Nishimura, C. and Liu, C. T., Scr. Metall. 27, 1307–11 (1992).Google Scholar
57. Nishimura, C. and Liu, C. T., Scr. Metall. 25, 791 (1991).Google Scholar
58. Aoki, A. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
59. Liu, C. T., Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, August 1992 (unpublished).Google Scholar
60. Liu, C. T. and Sikka, V. K., J. Met. 38, 19 (1986).Google Scholar
61. Liu, C. T., Sikka, V. K., Horton, J. A., and Lee, E. H., “Alloy Development and Mechanical Properties of Nickel Aluminide (Ni3Al) Alloys,” ORNL-6483, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, August 1988.Google Scholar
62. Liu, C. T., U.S. Patent No. 5,108,700 April 1992).Google Scholar
63. Liu, C. T., in Micon 86 (ASTM, Philadelphia, PA, 1988) p. 222.Google Scholar
64. Taub, A. I., Chang, K.-M., and Liu, C. T., Scr. Metall. 20, 1613 (1986).Google Scholar
65. Gieseke, B. G. and Sikka, V. K., Martin Marietta Energy Systems, Inc., Oak Ridge Nad. Lab., Oak Ridge, TN, August 1992 (unpublished).Google Scholar
66. Han, Y. F., Li, S. H., Ma, S., and Tan, Y. N., paper presented at First Pacific Rim International Conference on Advanced Materials and Processing, Hongzhou, China, June 23–27, 1992 (unpublished).Google Scholar
67. Vedula, K., Pathare, V., Aslamidis, I., and Titran, R. H., pp. 411421 in Ref. 1.Google Scholar
68. Smialek, J. L., Metall. Trans. A 9A, 309 (1978).Google Scholar
69. Darolia, R., J. Met. 43(3), 44 (1991).Google Scholar
70. Noebe, R. D., Bowman, R. R., and Nathal, M. V., accepted for publication in Int. Met. Rev. (1993).Google Scholar
71. Nesbitt, J. A., Vinarcik, E. J., Barrett, C. A. and Doychak, J., Mater. Sci. Eng. A153, 56166 (1992).Google Scholar
72. Barrett, C. A., Oxid. Met. 30, 361 (1988).Google Scholar
73. Ball, A. and Smallman, R. E., Acta Metall. 14, 1517 (1966).Google Scholar
74. Zaluzec, N. J. and Fraser, H. L., Scr. Metall. 8, 1049 (1974).Google Scholar
75. Baker, I. and Schulson, E. M., Metall. Trans. A 15A, 1129 (1984).Google Scholar
76. George, E. P. and Liu, C. T., J. Mater. Res. 5, 754 (1990).Google Scholar
77. Hahn, K. H. and Vedula, K., Scr. Metall. 23, 7 (1989).Google Scholar
78. Grala, E. M., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (Wiley, New York, 1960), p. 368.Google Scholar
79. Darolia, R., Lahrman, D. F., and Field, R. D., Scr. Metall. 26, 1007 (1992).Google Scholar
80. Liu, C. T., Horton, J. A., Lee, E. H., and George, E. P., “Alloying Effects on Mechanical and Metallurgical properties of NLA1,” Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., ORNL Report, Oak Ridge, TN, 1993 (unpublished).Google Scholar
81. Hack, J. E., Brzeski, J. M., and Darolia, R., Scr. Metall. 27, 1259 (1992).Google Scholar
82. Reed-Hill, R. E. in Physical Metallurgy Principles. 2nd ed. (Van Nostrand, New York, 1973).Google Scholar
83. Bowman, R. R., Noebe, R. D., Raj, S. V., and Locci, I. E., Metall. Trans. A 23A, 1493 (1992).Google Scholar
84. Jayaram, R. and Miller, M. K., Surf. Sci. 266, 310 (1992).Google Scholar
85. Darolia, R., General Electricm Aircraft Engines, 1992 (private communication).Google Scholar
86. Rigney, J. D. and Lewandoski, J. J., Mater. Sci Eng. A 149, 143–51 (1992).Google Scholar
87. Noebe, R. D., Cullers, C. L., Bowman, R. R., J. Mater. Res. 7, 605 (1992).Google Scholar
88. Lahrman, D. F., Field, R. D., and Darolia, R., p. 603 in ref. 4 (1991).Google Scholar
89. Lipsitt, H., p. 351 in ref. 1 (1985).Google Scholar
90. Kumar, K. S. and Brown, S. A., Philos. Mag. A 65, 91 (1992).Google Scholar
91. George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).Google Scholar
92. Draper, S. L., Brindley, P. K., and Nathal, M. V., Metall. Trans. 23A 2541 (1992).Google Scholar
93. Miracle, D. B., Anton, D. L., and Graves, J. A., in Intermetallic Matrix Composite II. Vol. 273 (MRS, Pittsburgh, PA, 1992).Google Scholar
94. Stocks, G. M. and Gonis, A., “Alloy Phase Stability and Design,” NATO ASI Series, Vol. 163 (Kluwer Academic Publishers, Boston, MA, 1992).Google Scholar
95. Fu, C. L. and Yoo, M. H., Philos. Mag. Lett. 62, 159 (1990).Google Scholar
96. Yoo, M. H. and Fu, C. L., ISIJ Int. 31, 1049 (1991).Google Scholar
97. Yoo, M. H., Fu, C. L., and Lee, J. K., p. 545 in ref. 4 (1991).Google Scholar
98. Fu, C. L. and Yoo, M. H., p. 155 in ref. 8 (1992).Google Scholar
99. Yoo, M. H. and Fu, C. L., Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, 1992 (private communication).Google Scholar
100. Inui, H., Oh, M. H., Nakamura, A., and Yamaguchi, M. to be published in Acta Metall. (1993).Google Scholar
101. Yamaguchi, M. and Inui, H., p. 217 in ref. 8 (1992).Google Scholar
102. Kim, Y-W., p. 777 in ref. 4 (1991), and Acta Metall. 40, 1121 (1992).Google Scholar
103. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S. R., Shirai, Y., and Yamaguchi, M., Philos. Mag. A 61, 591 (1990).Google Scholar
104. Kim, Y-W., Universal Energy Systems, Inc., 1992 (private communication).Google Scholar
105. Chan, K. S. and Kim, Y-W., Trans. Metall. A 23A, 1663 (1992).Google Scholar
106. Sikka, V. K., Mavity, J. T., and Anderson, K., Mater. Sci. Eng. A–153, 712 (1992).Google Scholar
107. Sikka, V. K., Oak Ridge Nad. Lab., Oak Ridge, TN, 1992 (private communication).Google Scholar
108. Darolia, R., Lahrman, D. F., Field, R. D., Dobbs, J. R., Chang, K. M., Goldman, E. H., and Konitzer, D. G., p. 679 in ref. 8 (1992).Google Scholar
109. Yamaguchi, M., Kyoto University, Kyoto, Japan, 1992 (private communication).Google Scholar
110. Meschter, P. and Schwartz, D. S., J. Met. 41, 5255 (1989).Google Scholar
111. Maloy, S., Heuer, A. H., Lewandowski, J. J., and Petrovic, J., J. Am. Ceram. Soc. 74, 2704 (1991).Google Scholar
112. Fujiwara, T., Yasuda, K., and Kodama, H., pp. 633–37 in ref. 7 (1991).Google Scholar
113. Anton, D. L. and Shah, D. M., pp. 361–71 in ref. 3 (1989).Google Scholar
114. Takeyama, M. and Liu, C. T., Mater. Sci. Eng. A132, 61 (1991).Google Scholar
115. Livingston, J. D., Phys. Status. Solidi A 131, 415 (1992).Google Scholar
116. Kanthal Super Handbook. Kanthal Furnace Products, 1986.Google Scholar
117. Buehler, W. J. and Wang, F. I., Ocean Eng. 1, 105–20 (1986).Google Scholar
118. Schetky, I. M., Sci. Am. 241, 7482 (1979).Google Scholar
119. Liu, C. T., Kunsmann, H., Otsuka, K., and Wuttig, M., ed., “Shape-Memory Materials and Phenomena-Fundamental Aspects and Applications,” in Proceedings of Materials Research Society Symposium (MRS, Pittsburgh, PA, 1992).Google Scholar
120. George, E. P., Liu, C. T., Sparks, C. J., Kao, Ming-Yuan, Horton, J. A., Kunsmann, H., and King, T., pp. 121–28 in ref. 119 (1992).Google Scholar
121. Hutton, A., J. Met. 44(3), 11 (1992).Google Scholar
122. Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S., and Matsura, Y., Jpn. J. Appl. Phys. 26, 785 (1987).Google Scholar
123. Kumar, K. S., “Silicides Technology and Applications,” in Intermetallic Compounds: Principles and Practice, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley and Sons , New York, 1993).Google Scholar