Article contents
Recent Advances in Morphology and Mechanical Properties of Rigid-Rod Molecular Composites
Published online by Cambridge University Press: 21 February 2011
Abstract
Rigid-rod molecular composites are a new class of high performance structural polymers which have high specific strength and modulus and also high thermal and environmental resistance. The concept of using a rigid-rod, extended chain polymer to reinforce a ductile polymer matrix at the molecular level has been demonstrated with morphological and mechanical property studies for aromatic heterocyclic systems, but new materials systems and processing techniques will be required to produce thermoplastic or thermoset molecular composites. Improved characterization and modeling will also be required. In this regard, new results on modeling of mechanical properties of molecular composites are presented and compared with experimental results. The Halpin-Tsai equations from ‘shear-lag’ theory of short fiber composites predict properties reasonably well when using the theoretical modulus of rigid-rod molecules in aromatic heterocyclic systems, but newer matrix systems will require consideration of matrix stiffness, desired rod aspect ratio, and rod orientation distribution. Application of traditional and newer morphological characterization techniques are discussed. The newer techniques include: Raman light scattering, high resolution and low voltage SEM, parallel EELS in TEM, synchrotron radiation in X-ray scattering, and ultrasound for integrity studies. The properties of molecular composites and macroscopic composites are compared and it is found that excellent potential exists for use of molecular composites in structural applications including engineering plastics, composite matrix resins, and as direct substitutes for fiber reinforced composites.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990
References
REFERENCES
- 3
- Cited by