Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:24:59.988Z Has data issue: false hasContentIssue false

Recent Advances and Developments in Refractory Alloys

Published online by Cambridge University Press:  25 February 2011

T.G. Nieh
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, CA 94551-9900
J. Wadsworth
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, CA 94551-9900
Get access

Abstract

Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. In this paper, we present recent progress in the understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, will also be discussed. Some Re structures, for extremely high temperature applications (> 2000°C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-l%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb3A1, Nb2Be17, and MoSi2, are briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klopp, W.D., Summary of NASA-Lewis Research Center Program on Refractory Metals for 1963-11974, NASA-Lewis Research Center, 1974.Google Scholar
2. Bryhan, A.J. and Chan, R.C., JOM, 45(6), (1993) 50.Google Scholar
3. Wojcik, C.C., private communication, Teledyne Wah Chang, Albany, OR, 1991.Google Scholar
4. Wadsworth, J., Nieh, T.G., and Stephens, J.J., Inter. Mater. Rev., 33(3), (1988) 131.CrossRefGoogle Scholar
5. Chen, E., Ahmad, I., Ammon, R., and Crowson, A., Tungsten and Tungsten Alloys-Recent Advances, The Minerals, Metals & Materials Society, Warrendale, PA, (1991),.Google Scholar
6. Stephens, J.J. and Ahmad, I. eds. High Temperature Niobium Alloys, The Minerals, Metals & Materials Society, Warrendale, PA, (1991).Google Scholar
7. Olsen, C.S., Dalder, E.N.C., and Grobstein, T. eds. Evolution of Refractory Metal Alloys, The Minerals, Metals & Materials Society, Warrendale, PA, (1993).Google Scholar
8. Wadsworth, J., Wittenauer, J., and Nieh, T.G., in Critical Issues in High Temperature Materials,. ed. Stoloff, N., Engineering Foundation, Washington, DC, (1993). (in press)Google Scholar
9. Alexander, D., Berczik, D., Bourdeau, R., Perkins, R., Svedberg, R., and Stephens, J., Development of High-Temperature Metallics for Structural Aerospace Applications, FR-20756, United Technologies, 1989.Google Scholar
10. Perkins, R.A., Chiang, K.T., and Meier, G.H., Scripta Metall., 22 (1988), 419.Google Scholar
11. Wukusick, C.S., Oxidation Behavior of intermetallic Compounds in the Nb-Ti-Al System, GEMP-218, General Electric, 1963.Google Scholar
12. Lee, J.S., Stephens, J.J., and Nieh, T.G., in High Temperature Niobium Alloys,. ed. Stephens, J.J. and Ahmad, I., The Minerals, Metals & Materials Society, Warrendale, PA, (1991), p. 143.Google Scholar
13. Anton, D.L., Snow, D.B., Favrow, L.H., and Giamei, A.F., Dispersion Strengthening of High Temperature Niobium Alloys, R89-917437-3, United Technologies Research Center, 1989.Google Scholar
14. Biberger, M., Davidson, M.J., and Mukherjee, A.K., Mater. Sci. Eng., A159 (1992), 181.Google Scholar
15. Wadsworth, J., Kramer, P.A., Dougherty, S.E., and Nieh, T.G., Scr. Metall. Mater., 27 (1992), 71.Google Scholar
16. Yun, H.M. and Titran, R.H., Metall. Trans., 23A (1992), 3121.Google Scholar
17. Grobstein, T.L., The Interface in Tungsten Fiber Reinforced Niobium Metal-Matrix Composites, TM-102122, NASA, 1989.Google Scholar
18. Grobstein, T.L., Creep Behavior of Tungsten Fiber Reinforced Niobium Metal-Matrix Composites, TM- 102307, NASA, 1989.Google Scholar
19. Verhoeven, J.D., Spitzig, W.A., Schmidt, F.A., Krotz, P.D., and Gibson, E.D., J. Mater. Sci., 24 (1989), 1015.Google Scholar
20. Spitzig, W.A., Downing, H.L., Laabs, F.C., Gibson, E.D., and Verhoeven, J.D., Metall. Trans., 24A (1993), 7.CrossRefGoogle Scholar
21. Ellis, T.W., Anderson, I.E., Downing, H.L., and Verhoeven, J.D., Metall. Trans., 24A (1993), 21.Google Scholar
22. Jha, S.C., Delagi, R.G., Forster, J.A., and Krotz, P.D., Metall. Trans., 24A (1993), 15.Google Scholar
23. Krotz, P.D., Spitzig, W.A., and Labbs, F.C., Mater. Sci. Eng., A110 (1989), 37.CrossRefGoogle Scholar
24. Murayama, Y., Hanada, S., and Obara, K., Mater. Sci. Eng., A159 (1992), 173.Google Scholar
25. Fleischer, R.L., Field, R.D., Denike, K.K., and Zabala, R.J., Metall. Trans., 21A (1990), 3063.CrossRefGoogle Scholar
26. Anton, D.L. and Shah, D.M., in Intermetallic Matrix Composites, MRS Symp. Vol 194,. ed. Anton, D.L., Martin, P.L., and Miracle, D.B., Materials Research Society, Pittsburgh, PA, (1990), p. 45.Google Scholar
27. Henager, C.H. Jr., Jacobson, R.E., and Brummer, S.M., Mater. Sci. Eng., A152 (1992), 416.Google Scholar
28. Nieh, T.G., Chou, T.C., Wadsworth, J., Owen, D., and Chokshi, A.H., J. Mater. Res., 8(4), (1993) 757.CrossRefGoogle Scholar
29. Nieh, T.G. and Wadsworth, J., Scr. Metall. Mater., 24 (1990), 1489.Google Scholar
30. Hanada, S., private communication, Tohoku University, Japan, 1993.Google Scholar
31. Luo, A., Park, J.J., Jacobson, D.L., Tsao, B.H., and Ramalingam, M.L., Scr. Metall. Mater., 29 (1993), 729.Google Scholar
32. Wright, R.N., Brusso, J.A., and Mikkola, D.E., Mater. Sci. Eng., A104 (1988), 85.Google Scholar
33. Choi, J., Lee, J.-H., Moon, I.-H., and Choi, H.S., Metall. Trans., 20A (1990), 919.Google Scholar
34. McNally, C.M., Nieh, T.G., and Kao, W.H., Scr. Metall., 22 (1988), 1847.Google Scholar
35. Fujii, T., Watanabe, R., Hiraoka, Y., and Okada, M., Mater. Sci. Eng., 68 (1984), 45.CrossRefGoogle Scholar
36. Fujii, T., Watanabe, R., Hiraoka, Y., and Okada, M., J. Less-Comm. Metals, 96 (1984), 297.Google Scholar
37. Fujii, T., Watanabe, R., Hiraoka, Y., and Okada, M., J. Less-Comm. Metals, 97 (1984), 163.Google Scholar
38. Xianlian, J. and Pingan, J., J. Mater. Sci. Lett., 9 (1990), 763.Google Scholar
39. Morito, F., J. Mater. Sci., 24 (1989), 3403.CrossRefGoogle Scholar
40. Morito, F., JOM, 45(6), (1993) 54.Google Scholar
41. Calderon, H.A., Kostorz, G., and Ullrich, G., Mater. Sci. Eng., A160 (1993), 189.Google Scholar
42. Petrovic, J.J., Honnell, R.E., and Vasudevan, A.K., in Intermetallic Matrix Composites, MRS Symp. Vol 194,. ed. Anton, D.L., Martin, P.L., and Miracle, D.B., Materials Research Society, Pittsburgh, PA, (1990), p. 123.Google Scholar
43. Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng., A155 (1992), 1.CrossRefGoogle Scholar
44. Lu, T.C., Evans, A.G., Hecht, R.J., and Mehrabian, R., Acta Metall. Mater., 39 (1991), 1853.Google Scholar
45. Rao, K.T.V., Soboyejo, W.O., and Ritchie, R.O., Metall. Trans., 23A (1992), 2249.Google Scholar
46. Carter, D.H., SiC Whisker-Reinforced MoSi2 , LA-11411-T, Los Alamos National Laboratory, New Mexico, 1988.Google Scholar
47. Chou, T.C. and Nieh, T.G., J. Mater. Res., 8(1), (1993) 214.CrossRefGoogle Scholar
48. Chou, T.C. and Nieh, T.G., J. Mater. Res., 8(7), (1993) 1605.Google Scholar
49. Chou, T.C. and Nieh, T.G., Scr. Metall. Mater., 26 (1992), 1637.Google Scholar
50. Jamet, J., in 8th International Symposium on Ballistics,. ed. Reinecke, W.G., AVCO System Division, Wilmington, MA, (1984), p. v 1.Google Scholar
51. Clark, J.B., Garrett, J. R.K., Jungling, T.L., Vandermeer, R.A., and Vold, C.L., Metall. Trans., 22A (1991), 2039.Google Scholar
52. Clark, J.B., Garrett, J. R.K., Jungling, T.L., and Asfahani, R.I., Metall. Trans., 22A (1991), 2959.Google Scholar
53. Choi, C.S., Prask, H.J., Orosz, J., and Baker, E.L., J. Mater. Sci., 28 (1993), 3557.CrossRefGoogle Scholar
54. Fleischer, R.L., Field, R.D., and Briant, C.L., Metall. Trans., 22A (1991), 129.Google Scholar
55. Fleischer, R.L., J. Metals, 37 (1985), 16.Google Scholar
56. Briant, C.L. and Hall, E.L., Metall. Trans., 20A (1989), 1669.Google Scholar
57. Briant, C.L., Mater. Sci. Technol., 7 (1991), 739.Google Scholar
58. Yun, H.M., Mater. Sci. Eng., A165 (1993), 65.CrossRefGoogle Scholar
59. Walter, J.L. and Koch, E.F., J. Mater. Sci., 26 (1991), 505.Google Scholar
60. Briant, C.L., Metall. Trans., 24A (1993), 1073.Google Scholar
61. Briant, C.L., Scr. Metall., 22 (1988), 1665.CrossRefGoogle Scholar
62. Pugh, J.W., Metall. Trans., 20A (1989), 1144.Google Scholar
63. Luo, A., Jacobson, D.L., and Shin, K.S., Scr. Metall. Mater., 25 (1991), 1811.CrossRefGoogle Scholar
64. Luo, A., Shin, K.S., and Jacobson, D.L., Acta Metall. Mater., 40 (1992), 2225.Google Scholar
65. Luo, A., Shin, K.S., and Jacobson, D.L., Scr. Metall. Mater., 25 (1991), 2411.Google Scholar
66. Luo, A., Shin, K.S., and Jacobson, D.L., Mater. Sci. Eng., A150 (1992), 67.CrossRefGoogle Scholar
67. Liu, M. and Cowley, J., Mater. Sci. Eng., A160 (1993), 159.Google Scholar
68. Wadsworth, J., Metall. Trans., 14A (1983), 285.Google Scholar
69. Bose, A., Sims, D., and German, R.M., Metall. Trans., 19A (1988), 487.CrossRefGoogle Scholar
70. Bose, A. and German, R.M., Metall. Trans., 21A (1990), 1325.Google Scholar
71. Gerlach, U., Metall. Trans., 17A (1986), 435.CrossRefGoogle Scholar
72. O, R.G.'Donnell and Woodard, R.L., Metall. Trans., 21A (1990), 744.Google Scholar
73. Zamora, K.M.O., Sevillano, J.G., and Perez, M.F., Mater. Sci. Eng., A157 (1992), 151.Google Scholar
74. Ramesh, K.T. and Coates, R.S., Metall. Trans., 23A (1992), 2625.Google Scholar
75. Coates, R.S.A. and Ramesh, K.T., Mater. Sci. Eng., A145 (1991), 159.Google Scholar
76. Schmidt, C.G., Caligiuri, R.D., Giovanova, J.H., and Erlich, D.C., Metall. Trans., 22A (1991), 2349.Google Scholar
77. Bose, A. and German, R.M., Metall. Trans., 19A (1988), 3100.Google Scholar
78. Wittenauer, J.P. and Nieh, T.G., in Tungsten and Tungsten Alloys-Recent Advances,. ed. Chen, E., Ahmad, I., Ammon, R., and Crowson, A., The Minerals, Metals & Materials Society, Warrendale, PA, (1991), p. 21.Google Scholar
79. Kim, S.-G. and Whang, S.H., J. Mater. Sci., 26 (1991), 5911.Google Scholar
80. Wittenauer, J.P. and Nieh, T.G., in Tungsten and Tungsten Alloys- Recent Advances,. ed. Chen, E., Ahmad, I., Ammon, R., and Crowson, A., The Minerals, Metals & Materials Society, Warrendale, PA, (1991), p. 169.Google Scholar
81. Nieh, T.G., unpublished research, Lawrence Livermore National Laboratory, CA., 1993.Google Scholar
82. McDanels, D.L., Tungsten Fiber Reinforced Copper Matrix Composites- A Review, Technical Paper 2924, NASA, 1989.Google Scholar
83. Westfall, L.J. and Petrasek, D.W., Fabrication and Preliminary Evaluation of Tungsten Fiber Reinforced Copper Composites Combustion Chamber Liners, TM-100845, NASA, 1988.Google Scholar
84. Flagella, P.N. and Tarr, C.O., in Refractory Metals and Alloys IV, ed. Jaffee, R.I., Ault, G.M., Maltz, J., and Semchyshen, M., Gordon and Breach, Science Publisher, New York, (1967), p. 823.Google Scholar
85. Gonser, B.W. ed., Rhenium, Elsevier Publishing Company, Amsterdam, (1962), p. 27.Google Scholar
86. Hamilton, J.C., Yang, N.Y.C., Clift, W.M., Boehme, D.R., McCarty, K.F., and Franklin, J.E., Metall. Trans., 23A (1992), 851.Google Scholar
87. Chou, T.C., Joshi, A., and Packer, C.M., Scr. Metall. Mater., 28 (1993), 1565.Google Scholar
88. Gonser, B.W., editor, Rhenium, Elsevier Publishing Company, Amsterdam, (1962), p. 94.Google Scholar
89. Sherman, A., private communication, ULTRAMET Corp., Paloma, CA, 1993.Google Scholar