No CrossRef data available.
Article contents
Real-Time Spectroscopic Ellipsometry Studies of Zinc Oxide Deposition
Published online by Cambridge University Press: 01 February 2011
Abstract
Zinc oxide is increasingly being studied as an eventual replacement for indium tin oxide as a transparent conducting oxide (TCO) for thin film solar cells. In order to better understand the growth process of ZnO, as well as provide for accurate control on the National Renewable Energy Laboratory's TCO deposition system, undoped RF-magnetron sputtered ZnO films on silicon were analyzed in situ using real-time spectroscopic ellipsometry (RTSE). A large wavelength range (245-994 nm) was measured in order to derive information about optical properties both below and above the bandgap. Atomic force microscopy (AFM) measurements were also taken to confirm ellipsometry surface roughness results and provide additional insight into the surface morphology.
In light of observed poor fit of typical two-layer optical models to in situ ellipsometry data, we propose a model film structure consisting of two layers: a bulk ZnO layer of graded density that increases in thickness as the growth proceeds and a growth zone at the top of the film of approximately constant thickness with a slightly larger bandgap, lower density, and decreased excitonic absorption. Unfortunately, this model is insufficient to explain the evolution of the film during the early growth period, corresponding to film thicknesses less than 100 nm. Nevertheless, the presence of a growth zone for films above a certain thickness should provide some insight into the growth process of RF-magnetron sputtered ZnO.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008