Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:38:09.887Z Has data issue: false hasContentIssue false

Real-Time Pseudodielectric Function of Low-Temperature-Grown GaAs

Published online by Cambridge University Press:  10 February 2011

D.A. Gajewski
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899-8121, [email protected]
J.E. Guyer
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899-8121, [email protected]
J.J. Kopanski
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899-8121, [email protected]
J.G. Pellegrino
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899-8121, [email protected]
Get access

Abstract

We present the real-time pseudodielectric function <ε(E)> of low-temperature-grown GaAs (LT-GaAs) thin films during the growth as a function of growth temperature Tg and thickness. We obtained accurate measurements of the real-time <εc(E)> by using in situspectroscopic ellipsometry (SE) in conjunction with active feedback control of the substrate temperature using diffuse reflectance spectroscopy. We show that for epitaxial LT-GaAs layers, the peak in the imaginary pseudodielectric function <ε2(E)> decreases in amplitude and sharpness systematically with decreasing Tg. We also revealed an abrupt change in <εc(E)> near the critical epitaxial thickness hepi, the value of which decreases with decreasing Tg. Above hepi, the LT-GaAs grows polycrystalline (amorphous) above (below) Tg ∼ 190°C. We also simultaneously monitored the surface roughness and crystallinity by using real-time reflection high-energy electron diffraction (RHEED). These results represent progress in obtaining real-time control over the composition and morphology of LT-GaAs

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

National Research Council Postdoctoral Research Associate

§

Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce

Official contribution of NIST; not subject to copyright in the United States

References

REFERENCES

1 Eaglesham, D. J., Pfeiffer, L.N., West, K.W., and Dykaar, D.R.. Appl. Phys. Lett. 58, p. 65 (1991).Google Scholar
2 Kaminska, M., Liliental-Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B.Y., and Calawa, A.R.. Appl. Phys. Lett. 54, p. 1881 (1989).Google Scholar
3 Liliental-Weber, Z., Claverie, A., Washburn, J., Smith, F., and Calawa, A.R.. Appl. Phys. A 53, p. 141 (1991).Google Scholar
4 Liliental-Weber, Z., Swider, W., Yu, K.M., Kortright, J.B., Smith, F.W., and Calawa, A.R.. Appl. Phys. Lett. 58, p. 2153 (1991).Google Scholar
5 Look, D.C.. Thin SolidFilms 231, p. 61 (1993).Google Scholar
6 Manasreh, M. O., Look, D.C., Evans, K.R., and Stutz, C.E.. Phys. Rev. B 41, p. 10272 (1990).Google Scholar
7 Melloch, M. R., Woodall, J.M., Harmon, E.S., Otsuka, N., Pollak, F.H., Nolte, D.D., Feenstra, R.M., and Lutz, M.A.. Annual Review of Materials Science 25, p. 547 (1995).Google Scholar
8 Chen, N. F., Wang, Y.T., He, H.J., and Lin, L.Y.. Phys. Rev. B 54, p. 8516 (1996).Google Scholar
9 Eyink, K. G., Capano, M.A., Walck, S.D., Haas, T.W., and Streetman, B.G.. J. El. Mat. 26, p. 391 (1997).Google Scholar
10 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.Google Scholar
11 Yao, H., Snyder, P.G., and Woollam, J.A.. J. Appl. Phys. 70, p. 3261 (1991).Google Scholar
12 Aspnes, D. E., Quinn, W.E., and Gregory, S.. Appl. Phys. Lett. 56, p. 2569 (1990).Google Scholar
13 Johnson, S. R., Lavoie, C., Tiedje, T., and Mackensie, J.A.. J. Vac. Sci. Tech. B 11, p. 1007 (1993).Google Scholar
14 Pearsall, T. P., Saban, S.R., Booth, J., Beard, B.T., and Johnson, S.R.. Review of Scientific Instruments 66, p. 4977 (1995).Google Scholar
15 Eyink, K. G., Capano, M.A., Walck, S.D., Haas, T.W., and Streetman, B.G.. J. Vac. Sci. Tech. B 14, p. 2278 (1996).Google Scholar
16 Gao, X., Snyder, P.G., Yu, P.W., Zhang, Y.Q., and Peng, Z.F. in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N. M., and Sopori, B. L. (Mater. Res. Soc. Proc. 378, Pittsburgh, PA ), p. 213218.Google Scholar
17 Aspnes, D. E. and Studna, A.A.. Physical Reiew B (Condensed Matter) 27, p. 985 (1983).Google Scholar
18 Feng, G. F. and Zallen, R.. Phys. Rev. B 40, p. 1064 (1989).Google Scholar
19 Lukes, F., Gopalan, S., and Cardona, M.. Phys. Rev. B 47, p. 7071 (1993).Google Scholar
20 Dankowski, S. U., Kiesel, P., Ruff, M., Streb, D., Tautz, S., Keil, U.D., Sorensen, C.B., Knupfer, B., Kneissl, M., and Dohler, G.H.. Mat. Sci. Eng. B 44, p. 316 (1997).Google Scholar
21 Eyink, K. G., Cong, Y.S., Capano, M.A., Haas, T.W., Gilbert, R.A., and Streetman, B.G.. J. El. Mat. 22, p. 1387 (1993).Google Scholar