Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:34:38.394Z Has data issue: false hasContentIssue false

Real-time Optical Monitoring of GaxIn1−xP/GaP Heterostructures on Silicon

Published online by Cambridge University Press:  15 February 2011

N. Dietz
Affiliation:
Departments of Physics Materials Science
U. Rossow
Affiliation:
Departments of Physics
D. E. Aspnes
Affiliation:
Departments of Physics
N. Sukidi
Affiliation:
Materials Science
K. J. Bachmann
Affiliation:
Materials Science Chemical Engineering, North Carolina State University, Raleigh, NC 27695–7919
Get access

Abstract

In this paper we report the combined application of p-polarized reflectance spectroscopy (PRS), reflectance difference spectroscopy (RDS), and laser light scattering (LLS) to investigate the heteroepitaxy of GaxIn 1−xP/GaP on Si by pulsed chemical beam epitaxy (PCBE) with tertiarybutylphosphine (TBP), triethylgallium (TEG), and trimethylindium (TMI) precursors. Both, PRS and RDS follow the growth process with submonolayer resolution utilizing a periodic fine structure signal, which is caused by a periodic alteration of thickness and composition of an ultra-thin surface reaction layer during the periodic TEG and TBP exposure of the surface. After the transition from GaP growth to GaxIn 1−xP growth, the RDS oscillations are reoriented after about five precursor cycles in a new oscillation periodicity, where the response to the TBP pulse has the opposite direction. The ratio of the changes in the amplitudes of RDS signals as a response to TEG and TMI surface exposure is used to estimate the composition fo GaxIn 1−xP. The PRS fine structure is maintained after switching to GaxIn 1−xP growth with a separate feature for each TEG and TMI surface exposure. The amplitude ratio of these features changes during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Breiland, W. G. and Killeen, K. P., in Mater. Res. Soc Proc., ed. by Glembocki, O. J. P., , S.W.; Pollak, F.H.; Crean, G.M.; Larrabee, G., 99104 (1995).Google Scholar
2. Grothe, H., Boebel, F.G., J. Crystal Growth, 127, 10101013 (1993).Google Scholar
3. Aspnes, D. E., Harbison, J. P., Studna, A. A., Florez, L. T. and Kelly, M. K., J. Vac. Sci. & Technol. A 6(3), 1327–32 (1988).Google Scholar
4. Kobayashi, N. and Horikoshi, Y., Jpn. J. Appl. Phys. 29 L7025 (1993); Thin Solid Films 225, 32–9 (1993).Google Scholar
5. Aspnes, D.E., Quinn, W.E. and Gregory, S., Appl. Phys. Lett., 57(25), 2707–9 (1990).Google Scholar
6. Aspnes, D. E., Quinn, W. E., Tamargo, M. C., Pudensi, M. A. A., Schwarz, S. A., Brasil, M. J. S. P., Nahory, R. E. and Gregory, S., Appl. Phys. Lett. 60(10), 1244 (1992).Google Scholar
7. Dietz, N., Miller, A. and Bachmann, K. J., J. Vac. Sci. Technol. A 13(1) 153155 (1995).Google Scholar
8. Dietz, N. and Bachmann, K. J., MRS Bulletin 20, 4955 (1995).Google Scholar
9. Bachmann, K. J., Dietz, N., Miller, A. E., Venables, D. and Kelliher, J. T., J. Vac. Sci. & Technol. A 13(3) 696704 (1995).Google Scholar
10. Bachmann, K.J., Rossow, U. and Dietz, N., Mater. Sci. & Eng. B 37(1–3) 472478 (1995).Google Scholar
11. Dietz, N., Rossow, U., Aspnes, D. and Bachmann, K.J., JEM 24(11) 1571–76 (1995).Google Scholar
12. Dietz, N. and Bachmann, K.J., Vacuum, 1995 Elsevier Science Ltd, in print, Jan (1996).Google Scholar
13. Rossow, U. and Aspnes, D. E., to be published (1996)Google Scholar