Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:55:05.832Z Has data issue: false hasContentIssue false

Real-Time Optical Diagnostics For Measuring And Controlling Epitaxial Growth

Published online by Cambridge University Press:  16 February 2011

D. E. Aspnes
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
R. Bhat
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
E. Colas
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
L. T. Florez
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
S. Gregory
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
J. P. Harbison
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
I. Kamiya
Affiliation:
University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
W. E. Quinn
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
S. A. Schwarz
Affiliation:
Bellcore, Red Bank, NJ 07701–7040 USA
H. Tanaka
Affiliation:
Fujitsu Laboratories Ltd., Atsugi 243-01, JAPAN
M. Wassermeier
Affiliation:
University of California, Santa Barbara, CA 93106
Get access

Abstract

A variety of optical methods are now available for studying surface processes and for monitoring layer thicknesses and compositions during semiconductor crystal growth by molecular beam epitaxy (MBE), organometallic chemical vapor deposition (OMCVD), and related techniques. New capabilities for surface analysis are being provided by developing techniques such as reflectance-difference spectroscopy (RDS), which use intrinsic symmetries to suppress ordinarily dominant bulk contributions. Bulk and microstructural properties such as compositions and layer thicknesses can be determined by techniques such as spectroellipsometry (SE), which return information integrated over the penetration depth of light. Recent advances include the application of reflectance to monitor dynamic surface processes, RDS to characterize (001) GaAs surfaces in OMCVD environments, and SE to control growth of AlxGa1-x, As materials and structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aspnes, D. E., SPIE Proc. 1285, 2 (1990); 1361 (in press); Proc. Mater. Res. Soc. 198, 341 (1990).Google Scholar
2. Pelletier, E., SPIE Proc. 401, 74 (1983); R. Herrmann and A. Zöller, SPIE Proc. 401, 83 (1983).Google Scholar
3. Kobayashi, N. and Horikoshi, Y., J. Appl. Phys. Jpn. 28, L1880 (1989).Google Scholar
4. Makimoto, M., Yamauchi, Y., Kobayashi, N., and Horikoshi, Y., J. Appl. Phys. Jpn. 29, L207 (1990); N. Kobayashi, T. Makimoto, Y. YamauchL and Y. Horikoshi, J. Cryst. Growth 107, 62 (1991).Google Scholar
5. Horikoshi, Y., Yamaguchi, H., Briones, F., and Kawashima, M., J. Cryst. Growth 105, 326 (1990).Google Scholar
6. Pidduck, A. J., Robbins, D. J., Cullis, A. G., Gasson, D. B., and Glasper, I. L, J. Electrochem. Soc. 136, 3083 (1989); A. J. Pidduck, D. J. Robbins, D. B. Gasson, C. Pickering, and J. L Glasper, J. Electrochem. Soc. 136, 3088 (1989); A. J. Pidduck, D. J. Robbins, I. M. Young, and G. Patel, Thin Solid Films 183, 255 (1989).Google Scholar
7. Stehlin, T., Feller, M., Guyot-Sionnest, P., and Shen, Y. R., Optics Lett. 13, 389 (1988).Google Scholar
8. Heinz, T. F., Loy, M. M. T., and Iyer, S. S., Mat. Res. Symp. Proc. 75, 697 (1987); M. E. Pemble, D. S. Buhaenko, S. M. Francis, P. A. Goulding, and J. T. Allen, J. Cryst. Growth 107,37 (1991).Google Scholar
9. Shen, Y. R., Nature 337, 519 (1989).Google Scholar
10. Richter, W., Kurpas, P., Liickerath, R., Motzkus, M., and Waschbüsch, M., J. Cryst. Growth 107, 13 (1991).Google Scholar
11. Aspnes, D. E., in Optical Properties of Solids, New Developments, ed. Seraphin, B. O. (North- Holland, Amsterdam, 1976), p. 799; Proc. SPIE 946, 112 (1988); R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
12. Drevillon, B., Proc. SPIE 1186, 110 (1990).Google Scholar
13. Aspnes, D. E., Bhat, R., Colas, E.,Florez, L.T., Harbison, J. P., Kelly, M. K, Keramidas, V. G., Koza, M. A., and Studna, A. A., Proc. SPIE 1037, 2 (1989); E. Colas, D. E. Aspnes, R. Bhat, A. A. Studna, M. A. Koza, and V. G. Keramidas, Proc. SPIE 1186, 96 (1989); E. Colas, D. E. Aspnes, R. Bhat, A. A. Studna, J. P. Harbison, L T. Florez, M. A. Koza, and V. G. Keramidas, J. Cryst. Growth 107, 47 (1991).Google Scholar
14. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L. T., J. Vac. Sci. Technol. A 6, 1327 (1988).Google Scholar
15. Studna, A. A., Aspnes, D. E., Florez, L.T., Wilkens, B. J., and Ryan, R. E., J. Vac. Sci. Technol. A 7, 3291 (1989).Google Scholar
16. Aspnes, D. E., Harbison, J. P., Studna, A. A., and L Florez, T., Phys. Rev. Lett. 59, 1687 (1987).Google Scholar
17. See, e.g., Briones, F. and Horikoshi, Y., J. Appl. Phys. Jpn. 29, 1014 (1990); O. Acher, S. M. Koch, F. Omnes, M. Delour, M. Razeghi, and B. Drtvillon, J. Appl. Phys. 68, 3564 (1990); L Samuelson, K Deppert, S. Jeppesen, J. Jonsson, G. Paulsson, and P. Schmidt, J. Cryst. Growth 107, 68 (1991); F. Briones and A. Ruiz, J. Cryst. Growth (in press).Google Scholar
18. Gonzalez, Y., Gonzalez, L., and Briones, F., J. Cryst. Growth (in press).Google Scholar
19. Manghi, F., Sole, R. Del, Selloni, A., and Molinari, E., Phys. Rev. B 41, 9935 (1990).Google Scholar
20. Chang, Y. C. and Aspnes, D. E., Phys. Rev. B 41, 12002 (1990).Google Scholar
21. Wassermeier, M., Kamiya, I., Aspnes, D. E., Florez, L T., Harbison, J. P., and Petroff, P. M., J. Vac. Sci. Technol. (submitted).Google Scholar
22. Aspnes, D. E., Chang, Y. C., Studna, A. A., Florez, L.T., Farrell, H. H., and Harbison, J. P., Phys. Rev. Lett. 64, 192 (1990).Google Scholar
23. Farrell, H. H., Harbison, J. P., and L Peterson, D., J. Vac. Sci. Technol. B 5, 1482 (1987); D. J. Chadi, J. Vac. Sci. Technol. AS, 834 (1987).Google Scholar
24. Sauvage-Simkin, M., Pinchaux, R., Massies, J., Calverie, P., Jedrecy, N., Bonnet, J., and Robinson, I. K, Phys. Rev. Lett. 62, 563 (1989).Google Scholar
25. The formation by AsH 3 of (001) GaAs surfaces terminated by more than 1 ML of As has also recently been observed by Creighton (remarks given in talk D1.2, this Symposium).Google Scholar
26. Ozeki, M., Mochizuki, K, Ohtsuka, N., and Kodama, K, Thin Solid Films 174, 63 (1989).Google Scholar
27. Nishizawa, J., Kurabayashi, T., Abe, H., and Nozoe, A., Surface Sci 185, 249 (1987); T. H. Chiu, Appl. Phys. Lett. 55, 1244 (1989); J. R. Creighton, Surface Sci. 234, 287 (1990); B. Maa and P. D. Dapkus (to be published).Google Scholar
28. Aspnes, D. E., Quinn, W. E., and Gregory, S., Appl. Phys. Lett. 57, 2707 (1990).Google Scholar
29. Aspnes, D. E., Quinn, W. E., and Gregory, S., Appl. Phys. Lett. 56, 2569 (1990).Google Scholar
30. Tanaka, H., Colas, E., Kamiya, I., Aspnes, D. E., and R. Bhat (to be published).Google Scholar
31. Kim, Y. T., Collins, R. W., and Vedam, K, Surface Sci. 233, 341 (1990); A. R. Heyd, I. An, R. W. Collins, Y. Cong, K Vedam, S. S. Bose, and D. L Miller, J. Vac. Sci. Technol. (in press).Google Scholar