Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:15:19.177Z Has data issue: false hasContentIssue false

Real-Time Electrical Characterization of Dielectrophoretic Assembly of Multi-Walled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Libao An
Affiliation:
Michigan Technological University, Mechanical Engineering, MEEM Dept. 815 RL Smith, 1400 Townsend Drive, Houghton, MI, 49931, United States
Craig Friedrich
Affiliation:
[email protected], Michigan Technological University, Multi-Scale Technologies Institute, Houghton, MI, 49931, United States
Get access

Abstract

This paper reports on a real-time monitoring method for the assembly of a small number of metallic carbon nanotubes (CNTs) by dielectrophoresis (DEP). A time-varying impedance model of the electrode gap was developed to evaluate the number of CNTs which span the gap by measuring the simultaneous variation of gap impedance during the DEP process. Sudden decreases of gap impedance signals were detected during the DEP assembly of multi-walled carbon nanotubes (MWNTs) corresponding to assembly of single or multiple tubes across the gap. The method reduces the requirement of scanning electron microscopy (SEM) inspection and could help automate DEP assembly of CNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baughman, R. H., Zakhidov, A. A., and Heer, W. A. de, Science 297, 787 (2002).Google Scholar
2. Yu, M-F, Journal of Engineering Materials and Technology 126, 271 (2004).Google Scholar
3. Sinha, N. and Yeow, J. T.-W., IEEE Transactions on Nanobioscience 4, 180 (2005).Google Scholar
4. Postma, H. W. Ch., Teepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).Google Scholar
5. Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature 393, 49 (1998).Google Scholar
6. Chung, J., Lee, K. H., Lee, J., and Ruoff, R. S., Langmuir, 20, 3011 (2004).Google Scholar
7. Chan, R. H. M., Fung, C. K. M., and Li, W. J., Nanotechnology 15, S672 (2004).Google Scholar
8. Dai, H., Accounts of Chemical Research 35, 1035 (2002).Google Scholar
9. Dimaki, M. and BÕggild, P., Nanotechnology 16, 759 (2005).Google Scholar
10. Li, J., Zhang, Q., Peng, N., and Zhu, Q., Applied Physics Letters 86, 153116 (2005).Google Scholar
11. Seo, H. W., Han, C. S., Choi, D. G., Kim, K. S., and Lee, Y. H., Microelectronic Engineering 81, 83 (2005).Google Scholar
12. Boote, J. J. and Evans, S. D., Nanotechnology 16, 1500 (2005).Google Scholar
13. Chen, X. Q., Saito, T., Yamada, H., and Matsushige, K., Applied Physics Letters 78, 3714 (2001).Google Scholar
14. Chen, Z., Hu, W., Guo, J., and Saito, K., Journal of Vacuum Science and Technology B 22, 776 (2004).Google Scholar
15. Li, J., Zhang, Q., Peng, N., and Zhu, Q., Applied Physics Letters 86, 153116 (2005).Google Scholar
16. Han, C-S., Seo, H-W., Lee, H-W., Kim, S-H., and Kwak, Y-K., International Journal of Precision Engineering and Manufacturing 7, 42 (2006).Google Scholar
17. Dong, L., Bush, J., Chirayos, V., Solanki, R., Jiao, J., Ono, Y., Conley, J. F., and Ulrich, B. D.,Nanoletters 5, 2112 (2005).Google Scholar
18. Suehiro, J., Zhou, G., Imakiire, H., Ding, W., and Hara, M., Sensor and Actuators B 108, 398 (2005).Google Scholar
19. Antonis, A. N., Menon, M., and Froudakis, G. E., Applied Physics Letters 76, 3890 (2000).Google Scholar
20. Travis, J., LabVIEW for everyone, (Prentice Hall, Upper Saddle River, NJ, 2002).Google Scholar