No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
The major factor limiting the efficiencies of thin film Si solar cells is their weak absorption of red and near-infrared photons due to short optical path length and indirect bandgap. Powerful light trapping is essential to confine light inside the cell for sufficient absorption. Here we report the first experimental application of a new light trapping scheme, the textured photonic crystal (TPC) backside reflector, to monocrystalline thin film Si solar cells. TPC combines a onedimensional photonic crystal, i.e., a distributed Bragg reflector (DBR), with a reflection grating. The near unity reflectivity of DBR in a wide omnidirectional bandgap and the large angle diffraction by the grating ensures a strong enhancement in the absorption of red and near-infrared photons, leading to significant improvements in cell efficiencies. Measured short circuit current density Jsc was increased by 19% for 5 μm thick cells, and 11% for 20 μm thick cells, compared to theoretical predictions of 28% and 14%, respectively.