Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:48:13.890Z Has data issue: false hasContentIssue false

Real Time Characterization of Non-Ideal Surfaces and Thin Film Growth by Advanced Ellipsometric Spectroscopies

Published online by Cambridge University Press:  10 February 2011

R. W. Collins
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
P. I. Rovira
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
A. S. Ferlauto
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
Joohyun Koh
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
Ilsin An
Affiliation:
Department of Physics, Hanyang University, Ansan, KOREA.
J. A. Zapien
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
R. Messier
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
C. R. Wronski
Affiliation:
Materials Research Laboratory and Center for Thin Film Devices, The Pennsylvania State University, University Park, PA 16802.
Get access

Abstract

The development of multichannel ellipsometers with photodiode array-based detection systems has enabled real time spectroscopic ellipsometry (SE), a technique now being used widely to study surface modification and thin film growth. Multichannel ellipsometers based on the rotating-element design acquire spectroscopic data in parallel and thus offer advantages over other designs. The simplest rotating-element multichannel ellipsometers are constructed using a rotating polarizer or analyzer for polarization state modulation or detection. These configurations have a number of drawbacks, in particular, their insensitivity when measuring samples that reflect linearly polarized light and their susceptibility to errors when measuring samples having unrecognized non-idealities (e.g., macroscopic inhomogeneities) that generate a mixture of polarization states in the reflected beam. In this review, we describe recent advances in multichannel ellipsometry including (i) enhancement of the spectral range of the rotating-polarizer multichannel ellipsometer to 1.5–6.5 eV, (ii) adaptation of the rotating-compensator configuration to multichannel ellipsometry for studies of weakly absorbing and macroscopically inhomogeneous materials, and (iii) development of a dual rotating-compensator multichannel ellipsometer design for real time studies of optically anisotropic materials. As a recent example of the application of rotating-compensator multichannel ellipsometry, we describe analyses of (i) a macroscopically-rough (textured) tin-oxide (Sno2) film on a glass substrate and (ii) the fabrication of the p-layer component of an amorphous silicon-based p-i-n solar cell on the textured SnO2 film surface at a temperature of 200°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kim, Y.-T., Collins, R.W., and Vedam, K., Surf. Sci. 233, 341 (1990).10.1016/0039-6028(90)90647-QGoogle Scholar
[2] Collins, R.W., Rev. Sci. Instrum. 61, 2029 (1990).10.1063/1.1141417Google Scholar
[3] Collins, R.W., Aspnes, D.E., and Irene, E.A., Proceedings of the Second International Conference on Spectroscopic Ellipsometry, (Elsevier, Amsterdam, 1998).Google Scholar
[4] Pickering, C., Thin Solid Films 313–314, 406 (1998).10.1016/S0040-6090(97)00855-9Google Scholar
[5] Koh, J., Fujiwara, H., Lu, Y., Wronski, C.R., and Collins, R.W., Thin Solid Films 313–314, 469 (1998).10.1016/S0040-6090(97)00866-3Google Scholar
[6] Fujiwara, H., Koh, J., and Collins, R.W., Thin Solid Films 313–314, 474 (1998).10.1016/S0040-6090(97)00867-5Google Scholar
[7] Lee, J., Hong, B., Messier, R., and Collins, R.W., Thin Solid Films 313–314, 506 (1998).10.1016/S0040-6090(97)00874-2Google Scholar
[8] Johs, B., Herzinger, C., Dinan, J.H., Cornfeld, A., Benson, J.D., Doctor, D., Olson, G., Ferguson, I., Pelczynski, M., Chow, P., Kuo, C.H., and Johnson, S., Thin Solid Films 313–314, 490 (1998).10.1016/S0040-6090(97)00870-5Google Scholar
[9] Wakagi, M., Fujiwara, H., and Collins, R.W., Thin Solid Films 313–314, 464 (1998).10.1016/S0040-6090(97)00865-1Google Scholar
[10] Lehnert, W., Berger, R., Schneider, C., Pfitzner, L., Ryssel, H., Stehle, J.L., Piel, J.-P., and Neumann, W., Thin Solid Films 313–314, 442 (1998).10.1016/S0040-6090(97)00861-4Google Scholar
[11] Gao, X., Glenn, D.W., and Woollam, J.A., Thin Solid Films 313–314, 511 (1998).10.1016/S0040-6090(97)00875-4Google Scholar
[12] Aspnes, D.E., Quinn, W.E., and Gregory, S., Appl. Phys. Lett. 57, 2707 (1990).10.1063/1.103806Google Scholar
[13] Collins, R.W., An, I., Fujiwara, H., Lee, J., Lu, Y., Koh, J., and Rovira, P.I., Thin Solid Films 313–314, 18 (1998).10.1016/S0040-6090(97)00764-5Google Scholar
[14] Muller, R.H. and Farmer, J.C., Rev. Sci. Instrum. 55, 371 (1984).10.1063/1.1137745Google Scholar
[15] Duncan, W.M. and Henck, S.A., Appl. Surf. Sci. 63, 9 (1993).10.1016/0169-4332(93)90056-HGoogle Scholar
[16] Jellison, G.E. Jr., and McCamy, J.W., Appl. Phys. Lett. 61, 512 (1992).10.1063/1.107871Google Scholar
[17] Pittal, S., Snyder, P.G., and Ianno, N.J., Thin Solid Films 233, 286 (1993).10.1016/0040-6090(93)90109-3Google Scholar
[18] Lee, J., Rovira, P.I., An, I., and Collins, R.W., Rev. Sci. Instrum. 69, 1800 (1998).10.1063/1.1148844Google Scholar
[19] Jellison, G.E. Jr., Thin Solid Films 313–314, 33 (1998).10.1016/S0040-6090(97)00765-7Google Scholar
[20] Jellison, G.E. Jr., and Modine, F.A., Appl. Opt. 36, 8184 (1997).10.1364/AO.36.008184Google Scholar
[21] Goldstein, D.H., Appl. Opt. 31, 6676 (1992).10.1364/AO.31.006676Google Scholar
[22] An, I., Nguyen, H.V., Heyd, A.R., and Collins, R.W., Rev. Sci. Instrum. 65, 3489 (1994).10.1063/1.1144527Google Scholar
[23] Rovira, P.I. and Collins, R.W., J. Appl. Phys. 85, 2015 (1999).10.1063/1.369496Google Scholar
[24] Collins, R.W. and Koh, J., J. Opt. Soc. Am. A (in press, 1999).Google Scholar
[25] Zapien, J.A., Collins, R.W., and Messier, R., these Proceedings.Google Scholar
[26] Nguyen, N.V., Pudliner, B.S., An, I., and Collins, R.W., J. Opt. Soc. Am. A 8, 919 (1991).10.1364/JOSAA.8.000919Google Scholar
[27] Lee, J. and Collins, R.W., Appl. Opt. 37, 4320 (1998).Google Scholar
[28] An, I. and Collins, R.W., Rev. Sci. Instrum. 62, 1904 (1991).10.1063/1.1142390Google Scholar
[29] Chindaudom, P. and Vedam, K. in Physics of Thin Films, Vol. 19, edited by Vedam, K. (Academic Press, New York, 1994), p. 191.Google Scholar
[30] Davies, H., Proc. IEEE 101, 209 (1954).Google Scholar
[31] Beckmann, P. and Spizzichino, A., The Scattering of Electromagnatic Waves from Rough Surfaces, (Pergamon, Oxford, 1963).Google Scholar
[32] Hunderi, O., Surf. Sci. 96, 1 (1980).10.1016/0039-6028(80)90291-5Google Scholar
[33] Niklasson, G.A., Granqvist, C.G., and Hunderi, O., Appl. Opt. 20, 26 (1981).10.1364/AO.20.000026Google Scholar
[34] Koh, J., Lee, Y., Fujiwara, H., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).10.1063/1.122194Google Scholar
[35] An, I., Li, Y.M., Wronski, C.R., Nguyen, H.V., and Collins, R.W., Appl. Phys. Lett. 59, 2543 (1991).10.1063/1.105947Google Scholar
[36] Aspnes, D.E., Studna, A.A., and Kinsbron, E., Phys. Rev. B 29, 768 (1984).10.1103/PhysRevB.29.768Google Scholar