Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:35:34.639Z Has data issue: false hasContentIssue false

Readout of Magnetic Film-Based Memories by Nonlinear-Optical Magnetic Kerr Effect

Published online by Cambridge University Press:  10 February 2011

T.V. Murzina
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia
N.V. Didenko
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia
A.A. Fedyanin
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia
A.V. Melnikov
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia
T.V. Misuryaev
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia
O.A. Aktsipetrov
Affiliation:
Physics Department, Moscow State University, Vorobyovi Gori, 119899 Moscow, Russia, [email protected]
Get access

Abstract

Magnetic field induced second harmonic generation (MSHG) is suggested as a nonlinear-optical readout for magnetic film-based memories: Systematic studies of the nonlinear-optical magnetic Kerr effect and MSHG interferometry are carried out for (i) magnetic rare-earth iron garnet films, (ii) Gd-containing Langmuir-Blodgett films and (iii) CoxCu1-x granular films. The magneto-induced nonlinear-optical properties of thin films being used for recording the information can be easily distinguished by the MSHG nondestructive probe. An estimation of the signal-to-noise ratio (readout error) shows an acceptable value of the magnetic contrast for this potential readout.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Reif, J., Rau, C., Matthias, E.. Phys. Rev. Lett. 71, p. 1931,1934 (1993).Google Scholar
[2] Rasing, Th., J. Magn. Magn. Mater. 165, p. 35 (1997).Google Scholar
[3] Pustogowa, U., Luce, T.A, Huibner, W., Bennemann, K.H.. J. Appl. Phys. 79, p. 6177, 6180. (1996).Google Scholar
[4] Pustogowa, U., Huibner, W., Bennemann, KH.. J. Magn. Magn. Mater. 148, p. 269, 272 (1995).Google Scholar
[5] Aktsipetrov, O.A., Aleshkevich, V.A., Melnikov, AV., Misuryaev, T.V., Murzina, T.V., Randoshkin, V.V.. J. Magn. Magn. Mater. 165, p. 421 (1997).Google Scholar
[6] Aktsipetrov, O.A., Fedyanin, A.A., Melnikov, A.V., Mishina, E.D., and Murzina, T.V., Jpn. J. Appl. Phys. 36, p. 48 (1998).Google Scholar
[7] Stolle, R., Veenstra, K.J., Manders, F., Rasing, Th., van den Berg, H., Persat, N.. Phys. Rev. B, 55, p. R4925, R4927 (1997).Google Scholar
[8] Aktsipetrov, O.A., Elyutin, P.V., Fedyanin, A.A., Nikulin, A.A., and Rubtsov, A.N., Surf. Sci. 325, p. 343 (1995).Google Scholar
[9] Tishin, A.M., Koksharov, Yu. A., Bohr, J., Khomutov, G.B., Phys. Rev. B, 55, p. 17 (1996).Google Scholar
[10] Korn, G.A., Korn, Th. M., Mathematical Handbook, McGraw-Hill Book Company, New York, 1968, p. 514.Google Scholar
[11] Pavlov, V.V., Pisarev, R.V., Kirilyuk, A., Rasing, Th. J. Appl. Phys. 81, p. 4631,4633 (1997).Google Scholar