Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T07:40:07.102Z Has data issue: false hasContentIssue false

Reactivity Analysis of the AunAgm (6 ≤ n + m ≤ 12) Bimetallic Clusters with Selected Proportions

Published online by Cambridge University Press:  31 May 2013

Bertha Molina
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-646, 04510, México, D.F., México.
Jorge R. Soto
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-646, 04510, México, D.F., México.
Francisco E. Rojas
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-646, 04510, México, D.F., México.
Jorge J. Castro
Affiliation:
Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000, México, D.F., México.
Get access

Abstract

It is well known that Au-Ag bimetallic nanoparticles have better performance in catalytic processes compared to their counterpart pure clusters. The improvement in their catalytic properties has been attributed to a kind of synergy between the gold and silver atoms that has not been fully understood. Unlike pure clusters, there are very few studies on the catalytic behavior of the Au-Ag binary nanoparticles. From the theoretical point of view, in the subnanometer regimen, the bimetallic Au-Ag clusters present a challenging problem, since by combining the different gold and silver relativistic effects, a variety of skeletal geometric structures and homotopic distributions are obtained. In particular, pure gold has favorable planar structure even up to 16 atoms, while silver begins to favor 3D arrangements from 5-7 atoms. This dissimilar behavior produces a diverse population of 2D and 3D coexisting binary clusters, whose properties strongly depend of the Au/Ag mixing ratio. In this work we use the relativistic approach ZORA-DFT to model the AunAgm (with 4 ≤ (n + m) ≤ 12) binary nanoclusters in selected proportions (1:1, 3:1, 5:1) in the gas-phase and we study their reactivity from the descriptors based in the condensed Fukui indexes obtained from an NBO electronic population analysis.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haruta, M., Catal. Today 36, 153, (1997).CrossRefGoogle Scholar
Yoon, B., Häkkinen, H., Landman, U., Wörz, A.S., Antonietti, J.M., Abbet, S., Judai, K., Heiz, U., Science, 307, 403 (2005).CrossRefGoogle Scholar
Soule de Bas, B., Ford, M.J., Cortie, M.B., J. Mol. Struct. (THEOCHEM) 686, 193 (2004).CrossRefGoogle Scholar
Johansson, M.P., Lechtken, A., Schooss, D., Kappes, M.M., Furche, F., Phys.Rev. A 77, 053202 (2008).CrossRefGoogle Scholar
Pyykko, P., Angew. Chem. Int. Ed. 43, 4412 (2004).CrossRefGoogle Scholar
Furche, F., Ahlrichs, R., Weis, P., Jacob, C., Glib, S., Bierweiler, T., Kappes, M.M., J. Chem. Phys. 117, 16982 (2002).Google Scholar
Fa, W., Luo, C., Dong, J., Phys.Rev. B 72, 205428 (2005).CrossRefGoogle Scholar
Häkkinen, H., Moseler, M., Landman, U., Phys. Rev. Lett. 89, 033401 (2002).CrossRefGoogle Scholar
Koretsky, G.M., Knickelbein, M.B., J. Chem. Phys. 107,10555 (1997).CrossRefGoogle Scholar
Fournier, R., J. Chem. Phys. 115, 2165 (2001).CrossRefGoogle Scholar
Jellinek, J., Faraday Discuss. 138, 11 (2008).CrossRefGoogle Scholar
Ferrando, R., Jellinek, J., Johnston, R.L., Chem. Rev. 108, 845 (2008).CrossRefGoogle Scholar
Jellinek, J., Krissinel, E.B., Chem. Phys. Lett. 258, 283 (1996).CrossRefGoogle Scholar
Jellinek, J., Krissinel, E.B., in Theory of Atomic and Molecular Clusters With a Glimpse at Experiments, ed. Jellinek, J., Spinger, Heidelberg, p 277 (1999)].CrossRefGoogle Scholar
Call, S., Global Optimization Software (2007). www.chem.byu.edu/users/jhansen/pso.Google Scholar
Wales, D. J., GMIN: A program for finding global minima and calculating thermodynamic properties from basin-sampling.www-wales.ch.cam.ac.uk/GMIN/.Google Scholar
ADF2012.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.Google Scholar
Weinhold, F., Landis, C. R., Discovering Chemistry with Natural Bond Orbitals, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012.CrossRefGoogle Scholar
Hong, L., Wang, H., Cheng, J., Huang, X., Sai, L., Zhao, J., Comp. Theor. Chem. 993, 36 (2012).CrossRefGoogle Scholar
Heiles, S., Logsdail, A.J., Schäfer, R., Johnston, R.L., Nanoscale 4, 1109 (2012).CrossRefGoogle Scholar