Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:24:07.000Z Has data issue: false hasContentIssue false

Reactive Ion Etching of CVD Diamond in CF4/O2, O2 and O2/Ar Plasmas

Published online by Cambridge University Press:  15 March 2011

Patrick W. Leech
Affiliation:
CSIRO Division of Manufacturing Science and Technology, 3169, Victoria, Australia
Geoffrey K. Reeves
Affiliation:
Dept. of Communication and Electronic Engineering, R.M.I.T. University, Victoria, Australia
Anthony S. Holland
Affiliation:
Dept. of Communication and Electronic Engineering, R.M.I.T. University, Victoria, Australia
Get access

Abstract

The reactive ion etching of diamond in O2, CF4/O2, CHF3/O2, O2/Ar) discharges has been examined as a function of bias voltage, flow rate and composition of the gas mixtures. Etching in O2 and O2/Ar plasmas (with flow ratio of O2/Ar >25% ) was characterised by a high etch rate (∼35 nm/min) and an increase in surface roughness with rising bias voltage. The CF4/O2 plasmas also produced a high etch rate (∼50 nm/min) but with only minor dependence of roughness on bias voltage. In comparison, the O2/Ar (with O2/Ar flow ratio <25%) and CHF3/O2 plasmas resulted in a low etch rate (7-10 nm/min). The high and low rate regimes were identified as ion- enhanced chemical etching and physical sputtering respectively. Etching in the O2/Ar plasmas has been attributed to a combination of the two processes dependent on the O2 content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glass, J.T., Fox, B.A., Driefus, D.L., Stoner, B.R., MRS Bulletin, 23, 49 (Sept. 1998).Google Scholar
2. Ashfold, M.N., and May, P.W., “Diamond Chemical Vapour Deposition”, Chemistry and Industry, (London), 13, (7 July 1997), 505.Google Scholar
3. Sandhu, G.B., Chu, W.K., Appl.Phys.Lett., 55(5), 437 (1989).Google Scholar
4. Vescan, A., Ebert, W., Borst, T.H. and Kohn, E., Diamond and Related Materials, 5, 774 (1996).Google Scholar
5. Kuttel, O.M., Diederich, L., Schaller, E., Carnal, O. and Schapbach, L., Surface Science, 337, 812 (1995).Google Scholar
6. Vivensang, C., Ferlazzo-Manin, L., Ravet, M.V., Turban, G., Rosseaux, F. and Gicquel, A., Diamond and Related Materials, 5, 840 (1996).Google Scholar
7. Dorsch, O., Werner, M., Obermeier, E., Harper, R.E., Johnston, C., and Buckley-Golder, I.M., Diamond and Related Materials, 1, 277 (1992).Google Scholar
8. Zhang, W.J., Sun, C., Bello, I., Lee, C.S. and Lee, S.T., J.Vac.Sci.Technol., A17(3), 763 (1999).Google Scholar
9. Grot, S.A., Ditzio, R.A., Gildenblat, G.Sh., Badzian, A.R. and Fonash, S.J., APL, 61(19), 2326 (1992).Google Scholar
10. Kobayashi, K., Mutsukura, N. and Machi, Y., Thin Solid Films, 200, 139 (1991).Google Scholar
11. Whetten, T., Armstead, A., Grzybowiski, T.A. and Ruoff, A.L., JVST, A2(2), 477 (1984).Google Scholar
12. Efremow, N.N., Geiss, M.W., Flanders, D.C., Lincoln, G.A. and Economou, N.P, JVST, B3, 416 (1985).Google Scholar
13. Grogan, D.F., Zhao, T., Bovard, B.G. and Macleod, H.A., Applied Optics, 31(10), 1483 (1992).Google Scholar
14. Malshe, A.P., Park, B.S., Brown, W.D. and Naseem, H.A., Diamond and Related Materials, 8, 1198 (1999),Google Scholar
15. Ohashi, H., Ishiguro, E., Sasano, T. and Shobatake, K., Appl.Phys.Lett., 68(26), 3173 (1996).Google Scholar
16. Steinbruchel, Ch., Lehmann, H.W., and Frick, K., J.Electrochem.Soc., 132, 180 (1985).Google Scholar
17. Steinbruchel, Ch., J.Electrochem.Soc., 130, 648 (1983).Google Scholar
18. Steinbruchel, Ch., Appl. Phys. Lett., 55(19), 1960 (1989).Google Scholar
19. , Williams and , Muller, J.Microelectromechanical Systems, 5(4), 258 (1996).Google Scholar