Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:41:35.228Z Has data issue: false hasContentIssue false

Reactions and Segregation on α-Cristobalite (011) Surfaces by the Electronegativity Equalization Method

Published online by Cambridge University Press:  01 January 1992

W. M. Mullins*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

The electronegativity equalization method is used to calculate the atomic charges, framework electronegativity and framework energy of the α–cristobalite bulk and the relaxed (011) surface. The effect of surface hydration and fluoridation on the framework properties are then calculated and related to surface charge. The segregation of germanium, aluminum and phosphorus in the α-cristobalite structure are modelled using the same method. The framework electronegativity difference between surface and bulk is observed to be a driving force for reactions and segregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pauling, L., The Nature of the Chemical Bond, (Cornell University Press, Ithica, 1960), p. 66.Google Scholar
2. Parr, R. G. and Yang, W., J. Am. Chem. Soc. 106 (1984) 4049.Google Scholar
3. Pearson, R. G., J. Am. Chem. Soc. 85 (1963) 3533.Google Scholar
4. Mortier, W. J., Genechten, K. V. and Gasteiger, J., J. Am. Chem. Soc. 107 (1985) 829.Google Scholar
5. Mortier, W. J., Ghosh, S. K. and Shankar, S., J. Am. Chem. Soc. 108 (1986) 4315.Google Scholar
6. Baekelandt, B. G., Mortier, W. J., Lievens, J. L. and Schoonheydt, R. A., J. Am. Chem. Soc. 113(1991)6730.Google Scholar
7. Yang, W. and Mortier, W. J., J. Am. Chem. Soc. 108 (1986) 5708.Google Scholar
8. Mullins, W. M., (submitted to J. Mat. Res. 1992).Google Scholar
9. Genechten, K. V., Mortier, W. J. and Geerlings, P., J. Chem. Phys. 86 (1987) 5063.Google Scholar
10. Genechten, K. V. and Mortier, W. J., Zeolites 8 (1988) 273.Google Scholar
11. Uytterhoeven, L., Mortier, W. J. and Geerlings, P., J. Phys. Chem. Solids 50 (1989) 479.Google Scholar
12. Bertaut, F., J. Phys. Radium 13 (1952) 499.Google Scholar
13. Pratt, G. W. Jr., Phys. Rev. 88 (1952) 1217.Google Scholar
14. Silvi, B., Allavena, M., Hannachi, Y. and D'Arco, P., J. Am. Cer. Soc. 75 (1992) 1239.Google Scholar
15. Iler, R. K., The Chemistry of Silica ,(John Wiley and Sons, New York, 1979), p. 625.Google Scholar
16. ibid.,pp. 9 & 646.Google Scholar