Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-06T19:43:34.022Z Has data issue: false hasContentIssue false

RBS/Channeling Characterization of Ba Implanted Mg

Published online by Cambridge University Press:  25 February 2011

R. C. Da Silva
Affiliation:
Departamento de Física, Instituto de Ciencias e Engenharia Nucleares, LNETI, E. N. 10, 2685 Sacavém, Portugal
Th. Hauser
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, P.O. Box 3640, D-7500 Karlsruhe, Germany
A. A. Melo
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
J. C. Soares
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
M. F. Da Silva
Affiliation:
Departamento de Física, Instituto de Ciencias e Engenharia Nucleares, LNETI, E. N. 10, 2685 Sacavém, Portugal
O. Meyer
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, P.O. Box 3640, D-7500 Karlsruhe, Germany
Get access

Abstract

The behaviour of 300 keV Ba ions implanted at room temperature with doses between 1015 and 1017 cm−2 in Mg single crystal and foils was investigated. The results show that the Ba ions do not occupy substitutions sites in Mg, either after the implantation or the annealing treatments. However, pronounced migration of Ba to the surface is observed above 380 °C. The remaining fraction overlaps with the aa-implanted distribution and forms small precipitates. This behaviour is not correlated with the recovery of the Mg lattice which is already complete at about 250 °C. The surface segregation of Ba delays the evaporation of Mg to temperatures near the melting point.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] da Silva, M. R., Melo, A. A., Soares, J. C., da Silva, M. F. and Vianden, R., Nucl. Inst. and Methods B, 15, 344 (1986).CrossRefGoogle Scholar
[2] da Silva, R. C., da Silva, M. F., Melo, A. A. and Soares, J. C., Leitão, E. and Barbosa, M., Nucl. Instr. and Meth. B, 50, 423 (1990).Google Scholar
[3] da Silva, R. C., da Silva, M. F., Khubeis, I., Meyer, O., Meloe, A. A., Soares, J. C., Nucl. Instr. and Meth. B, 63, 283 (1992).Google Scholar
[4] da Silva, R. C., da Silva, M. F., Thomé, L., Melo, A. A. and Soares, J. C., Mat. Res. Soc. Symp. Proc, Vol. 235, 497 (1992).CrossRefGoogle Scholar
[5] Massalski, Thadeus B., Murray, Joanne L., Barrett e Hugh Baker, Lawrence H. (eds.), in Binary Alloy Phase Diagrams. Vol. 1 (American Society of Metals, Metals Park, Ohio. USA, 1986), p. 417–8. see also:Google Scholar
Nayeb-Hashemi, A. A. and Clark, J. B., Bull. Alloy Phase Diagrams, 2, 2 (1986).Google Scholar
[6] Miedema, A. R., de Châtel, P. F. and de Boer, F. R., Physica, 100, 1 (1980).Google Scholar
[7] Eshelby, D. J., in Solid State Physics, Vol. 3, eds. Seitz, F. and Turnbull, D. (Academic Press, New York, 1956), p. 79.Google Scholar
[8] Biersack, J. P. and Haggmark, L. G., Nucl. Inst. and Methods, 174, 257 (1980).Google Scholar