Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T05:23:54.120Z Has data issue: false hasContentIssue false

Rational Design of Organic Electro-Optic Materials

Published online by Cambridge University Press:  15 March 2011

Alex Jen
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Robert Neilsen
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
Bruce Robinson
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
William H. Steier
Affiliation:
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-0483
Larry Dalton
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, U.S.A.
Get access

Abstract

A number of material properties must be optimized before organic electro-optic materials can be used for practical device applications. These include electro-optic activity, optical transparency, and stability including both thermal and photochemical stability. Exploiting an improved understanding of the structure/function relationships, we have recently prepared materials exhibiting electro-optic coefficients of greater than 50 pm/V and optical loss values of less than 0.7 dB/cm at the telecommunication wavelengths of 1.3 and 1.55 microns. When oxygen is excluded to a reasonable extent, long-term photostability to optical power levels of 20 mW has been observed. Photostability is further improved by addition of scavengers and by lattice hardening. Long-term (greater than 1000 hours) thermal stability of poling-induced electro-optic activity is also observed at elevated temperatures (greater than 80°C) when appropriate lattice hardening is used. The successful improvement of organic electro-optic materials rests upon (1) attention to the design of chromophore structure including design to inhibit unwanted intermolecular electrostatic interactions and to improve chromophore instability and (2) attention to processing conditions including those involved in spin casting, electric field poling, and lattice hardening. A particularly attractive new direction has been the exploitation of dendrimer structures and particularly of multi-chromophore containing dendrimer structures. This approach has permitted the simultaneous improvement of all material properties. Development of new materials has facilitated the fabrication of a number of prototype devices and most recently has permitted investigation of the incorporation of electro-optic materials into photonic bandgap and microresonator structures. The latter are relevant to active wavelength division multiplexing (WDM). Significant quality factors (greater than 10,000) have been realized for such devices permitting wavelength discrimination at telecommunication wavelengths of 0.01 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shi, Y., Lin, W., Olson, D. J., Bechtel, J. H., Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R., Science 288, 119 (2000).Google Scholar
2. Shi, Y., Lin, W., Olson, D. J., Bechtel, J. H., Zhang, H., Steier, W. H., Zhang, C., and Dalton, L. R., Appl. Phys. Lett. 77, 3525 (2000).Google Scholar
3. Teng, C. C., Appl. Phys. Lett. 60, 1538 (1992).Google Scholar
4. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett. 7, 638 (1995).Google Scholar
5. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H., Dalton, L. R., and Chow, P. M. D., Appl. Phys. Lett. 67, 1806 (1995).Google Scholar
6. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Appl. Phys. Lett. 70, 3335 (1997).Google Scholar
7. Chen, D., Fetterman, H. R., Chen, A., Steier, W. H., Dalton, L. R., Wang, W., and Shi, Y., Proc. SPIE 3006, 314 (1997).Google Scholar
8. Chen, D., Bhattacharya, D., Udupa, A., Tsap, B., Fetterman, H. R., Chen, A., Lee, S. S., Chen, J., Steier, W. H., and Dalton, L. R., IEEE Photon. Tech. Lett. 11, 54 (1999).Google Scholar
9. Chen, A., Chuyanov, V., Marti-Carrera, F. I., Garner, S., Steier, W. H., Chen, J., Sun, S., and Dalton, L. R., Proc. SPIE 3005, (1997).Google Scholar
10. Garner, S. M., Lee, S. S., Chuyanov, V., Yacoubian, A., Chen, A., Steier, W. H., Zhu, J., Chen, J., Wang, F., Ren, A. S., and Dalton, L. R., Proc. SPIE 3491, 421 (1998).Google Scholar
11. Garner, S. M., Lee, S.-S., Chuyanov, V., Chen, A., Yacoubian, A., Steier, W. H., and Dalton, L. R., IEEE J. Sel. Topics Quantum Electron. 35, 1146 (1999).Google Scholar
12. Steier, W. H., Chen, A., Lee, S.-S., Garner, S., Zhang, H., Chuyanov, V., Dalton, L. R., Wang, F., Ren, A. S., Zhang, C., Todorova, G., Harper, A. W., Fetterman, H. R., Chen, D., Udupa, A., Bhattacharya, D., and Tsap, B., Chem.Phys. 245, 487 (1999).Google Scholar
13. Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A., Garner, S., Chen, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., and Jen, A., J. Chem. Mater. 9, 1905 (1999).Google Scholar
14. Lee, S. S., Udupa, A. H., Erlig, H., Zhang, H., Chang, Y., Zhang, C., Chang, D.H., Bhattacharya, D., Tsap, B., Steier, W. H., Dalton, L. R., and Fetterman, H. R., IEEE Microwave and Guided Wave Lett. 9, 357 (1999).Google Scholar
15. Udupa, A. H., Erlig, H., Tsap, B., Chang, Y., Chang, D., Fetterman, H. R., Zhang, H., Lee, S. S., Wang, F., Steier, W. H., and Dalton, L. R., Electron. Lett. 35, 1702 (1999).Google Scholar
16. Shi, Y., Wang, W., Bechtel, J. H., Chen, A., Garner, S., Kalluri, S., Steier, W. H., Chen, D., Fetterman, H. R., Dalton, L. R., and Yu, L., IEEE J. Sel. Topics Quantum Electron. 2, 289 (1996).Google Scholar
17. Mao, S. S. H., Ra, Y., Guo, L., Zhang, C., Dalton, L. R., Chen, A., Garner, S., and Steier, W. H., Chem. Mater. 10, 146 (1998).Google Scholar
18. Dalton, L. R., Polymers for electro-optic modulator waveguides, Electrical and Optical Polymer Systems: Fundamentals, Methods, and Applications, eds. Wise, D. L., Cooper, T. M., Gresser, J. D., Trantolo, D. J., and Wnek, G. E., (World Scientific, 1998), pp. 609661.Google Scholar
19. Robinson, B. H., Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Zhang, C., Todorova, G., Lee, M., Aniszfeld, R., Garner, S. M., Chen, A., Steier, W. H., Houbrecht, S., Persoons, A., Ledoux, I., Zyss, J, and Jen, A. K. Y., Chem. Phys. 245, 35 (1999).Google Scholar
20. Dalton, L. R., Harper, A. W., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res. 38, 8 (1999).Google Scholar
21. Zhang, C., Wang, C., Dalton, L. R., Zhang, H., and Steier, W. H., Macromolecules 34, 253 (2001).Google Scholar
22. Zhang, C., Dalton, L. R., Oh, M.-C., Zhang, H., and Steier, W. H., Chem. Mater. 13, 3043 (2001).Google Scholar
23. Ma, H., Chen, B., Takafumi, S., Dalton, L. R., and A. Jen, K.-Y., J. Am. Chem. Soc. 123, 986 (2001).Google Scholar
24. Dalton, L. R., Nonlinear optical polymeric materials, Advances in Polymer Science, vol. 158 (Springer-Verlag, Heidelberg, 2001).Google Scholar
25. Dalton, L. R., Harper, A. W., and Robinson, B. H., Proc. Natl. Acad. Sci. USA 94, 4842 (1997).Google Scholar
26. Robinson, B. H. and Dalton, L. R., J. Phys. Chem. 104, 4785 (2000).Google Scholar
27. Pereverev, Y. V., Prezhdo, O. V., and Dalton, L. R., Chem. Phys. Lett. 340, 328 (2001).Google Scholar